36 resultados para Camera Network, Image Processing, Compression
Resumo:
Considering the difficulties in finding good-quality images for the development and test of computer-aided diagnosis (CAD), this paper presents a public online mammographic images database free for all interested viewers and aimed to help develop and evaluate CAD schemes. The digitalization of the mammographic images is made with suitable contrast and spatial resolution for processing purposes. The broad recuperation system allows the user to search for different images, exams, or patient characteristics. Comparison with other databases currently available has shown that the presented database has a sufficient number of images, is of high quality, and is the only one to include a functional search system.
Resumo:
Acoustic resonances are observed in high-pressure discharge lamps operated with ac input modulated power frequencies in the kilohertz range. This paper describes an optical resonance detection method for high-intensity discharge lamps using computer-controlled cameras and image processing software. Experimental results showing acoustic resonances in high-pressure sodium lamps are presented.
Resumo:
The classical approach for acoustic imaging consists of beamforming, and produces the source distribution of interest convolved with the array point spread function. This convolution smears the image of interest, significantly reducing its effective resolution. Deconvolution methods have been proposed to enhance acoustic images and have produced significant improvements. Other proposals involve covariance fitting techniques, which avoid deconvolution altogether. However, in their traditional presentation, these enhanced reconstruction methods have very high computational costs, mostly because they have no means of efficiently transforming back and forth between a hypothetical image and the measured data. In this paper, we propose the Kronecker Array Transform ( KAT), a fast separable transform for array imaging applications. Under the assumption of a separable array, it enables the acceleration of imaging techniques by several orders of magnitude with respect to the fastest previously available methods, and enables the use of state-of-the-art regularized least-squares solvers. Using the KAT, one can reconstruct images with higher resolutions than was previously possible and use more accurate reconstruction techniques, opening new and exciting possibilities for acoustic imaging.
Resumo:
In Part I [""Fast Transforms for Acoustic Imaging-Part I: Theory,"" IEEE TRANSACTIONS ON IMAGE PROCESSING], we introduced the Kronecker array transform (KAT), a fast transform for imaging with separable arrays. Given a source distribution, the KAT produces the spectral matrix which would be measured by a separable sensor array. In Part II, we establish connections between the KAT, beamforming and 2-D convolutions, and show how these results can be used to accelerate classical and state of the art array imaging algorithms. We also propose using the KAT to accelerate general purpose regularized least-squares solvers. Using this approach, we avoid ill-conditioned deconvolution steps and obtain more accurate reconstructions than previously possible, while maintaining low computational costs. We also show how the KAT performs when imaging near-field source distributions, and illustrate the trade-off between accuracy and computational complexity. Finally, we show that separable designs can deliver accuracy competitive with multi-arm logarithmic spiral geometries, while having the computational advantages of the KAT.
Resumo:
SKAN: Skin Scanner - System for Skin Cancer Detection Using Adaptive Techniques - combines computer engineering concepts with areas like dermatology and oncology. Its objective is to discern images of skin cancer, specifically melanoma, from others that show only common spots or other types of skin diseases, using image recognition. This work makes use of the ABCDE visual rule, which is often used by dermatologists for melanoma identification, to define which characteristics are analyzed by the software. It then applies various algorithms and techniques, including an ellipse-fitting algorithm, to extract and measure these characteristics and decide whether the spot is a melanoma or not. The achieved results are presented with special focus on the adaptive decision-making and its effect on the diagnosis. Finally, other applications of the software and its algorithms are presented.
Resumo:
This paper provides insights into liquid free water dynamics in wood vessels based on Lattice Boltzmann experiments. The anatomy of real wood samples was reconstructed from systematic 3-D analyses of the vessel contours derived from successive microscopic images. This virtual vascular system was then used to supply fluid-solid boundary conditions to a two-phase Lattice Boltzmann scheme and investigate capillary invasion of this hydrophilic porous medium. Behavior of the liquid phase was strongly dependent on anatomical features, especially vessel bifurcations and reconnections. Various parameters were examined in numerical experiments with ideal vessel bifurcations, to clarify our interpretation of these features. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Clinical applications of quantitative computed tomography (qCT) in patients with pulmonary opacifications are hindered by the radiation exposure and by the arduous manual image processing. We hypothesized that extrapolation from only ten thoracic CT sections will provide reliable information on the aeration of the entire lung. CTs of 72 patients with normal and 85 patients with opacified lungs were studied retrospectively. Volumes and masses of the lung and its differently aerated compartments were obtained from all CT sections. Then only the most cranial and caudal sections and a further eight evenly spaced sections between them were selected. The results from these ten sections were extrapolated to the entire lung. The agreement between both methods was assessed with Bland-Altman plots. Median (range) total lung volume and mass were 3,738 (1,311-6,768) ml and 957 (545-3,019) g, the corresponding bias (limits of agreement) were 26 (-42 to 95) ml and 8 (-21 to 38) g, respectively. The median volumes (range) of differently aerated compartments (percentage of total lung volume) were 1 (0-54)% for the nonaerated, 5 (1-44)% for the poorly aerated, 85 (28-98)% for the normally aerated, and 4 (0-48)% for the hyperaerated subvolume. The agreement between the extrapolated results and those from all CT sections was excellent. All bias values were below 1% of the total lung volume or mass, the limits of agreement never exceeded +/- 2%. The extrapolation method can reduce radiation exposure and shorten the time required for qCT analysis of lung aeration.
Resumo:
Objectives: Many morphometric magnetic resonance imaging (MRI) studies that have investigated the presence of gray matter (GM) volume abnormalities associated with the diagnosis of bipolar disorder (BD) have reported conflicting findings. None of these studies has compared patients with recent-onset psychotic BD with asymptomatic controls selected from exactly the same environment using epidemiological methods, or has directly contrasted BD patients against subjects with first-onset psychotic major depressive disorder (MDD). We examined structural brain differences between (i) BD (type I) subjects and MDD subjects with psychotic features in their first contact with the healthcare system in Brazil, and (ii) these two mood disorder groups relative to a sample of geographically matched asymptomatic controls. Methods: A total of 26 BD subjects, 20 subjects with MDD, and 94 healthy controls were examined using either of two identical MRI scanners and acquisition protocols. Diagnoses were based on DSM-IV criteria and confirmed one year after brain scanning. Image processing was conducted using voxel-based morphometry. Results: The BD group showed increased volume of the right dorsal anterior cingulate cortex relative to controls, while the MDD subjects exhibited bilateral foci GM deficits in the dorsolateral prefrontal cortex (p < 0.05, corrected for multiple comparisons). Direct comparison between BD and MDD patients showed a focus of GM reduction in the right-sided dorsolateral prefrontal cortex (p < 0.05, corrected for multiple comparisons) and a trend (p < 0.10, corrected) toward left-sided GM deficits in the dorsolateral prefrontal cortex of MDD patients. When analyses were repeated with scanner site as a confounding covariate the finding of increased right anterior cingulate volumes in BD patients relative to controls remained statistically significant (p = 0.01, corrected for multiple comparisons). Conclusions: These findings reinforce the view that there are important pathophysiological distinctions between BD and MDD, and indicate that subtle dorsal anterior cingulate abnormalities may be relevant to the pathophysiology of BD.
Resumo:
Background. - Tardive dyskinesia (TD) is a movement disorder observed after chronic neuroleptic treatment. Smoking is presumed to increase the prevalence of TD. The question of a cause-effect-relationship between smoking and TD, however, remains to be answered. Purpose of this study was to examine the correlation between the degree of smoking and the severity of TD with respect to differences caused by medication. Method. - We examined 60 patients suffering from schizophrenia and TD, We compared a clozapine-treated group With a group treated with typical neuroleptics. Movement disorders were assessed using the Abnormal-Involuntary-Movement-Scale and the technical device digital image processing, providing rater independent information on perioral movements. Results. - We found a strong correlation (.80 < r < .90, always p < .0001) between the degree of smoking and severity of TD. Repeated measurements revealed a positive correlation between changes in cigarette consumption and changes of the severity of TD (p < .0001). Analyses of covariance indicated a significant group-effect with a lower severity of TD in the clozapine-group compared to the typical-neuroleptics-group (p = .010). Interaction-analyses indicated a higher impact of smoking oil the severity of TD in the typical-neuroleptics-group compared to the clozapine-group (p = .033). Conclusion. - Concerning a possible cause-effect-relationship between smoking and TD, smoking is more of a general health hazard than neuroleptic exposure in terms of TD. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
In this paper, methods are presented for automatic detection of the nipple and the pectoral muscle edge in mammograms via image processing in the Radon domain. Radon-domain information was used for the detection of straight-line candidates with high gradient. The longest straight-line candidate was used to identify the pectoral muscle edge. The nipple was detected as the convergence point of breast tissue components, indicated by the largest response in the Radon domain. Percentages of false-positive (FP) and false-negative (FN) areas were determined by comparing the areas of the pectoral muscle regions delimited manually by a radiologist and by the proposed method applied to 540 mediolateral-oblique (MLO) mammographic images. The average FP and FN were 8.99% and 9.13%, respectively. In the detection of the nipple, an average error of 7.4 mm was obtained with reference to the nipple as identified by a radiologist on 1,080 mammographic images (540 MLO and 540 craniocaudal views).
Resumo:
There is virtually no literature on the effect of correction of syndromal faciocraniosynostosis with monobloc advancement on the palpebral fissure shape. Using image processing software, we measured the effect of monobloc advancement on the position of the upper and lower eyelids as well as the palpebral fissure slant in a series of 18 patients with syndromal faciocraniosynostosis who had undergone surgery for correction of orbital and midface hypoplasia. For both eyed of each patient, 3 variables were measured on the pre- and postoperative photographs: the linear distances between the upper and lower eyelid margins, the pupil center and the angle between the inner and outer canthi. The globe protrusion was also measured on axial computed tomography scans before and after surgery. The results indicate that the exorbitism reduction induced by monobloc advancement is accompanied by a diminution of the distance between both eyelids and the pupil center. However, the downward slant of the palpebral fissure is increased after surgery. The data suggest that the lower and upper eyelid retraction seen preoperatively in the majority of patients with faciocraniosynostosis tend to be corrected when the frontofacial region is advanced by the monobloc. On the other hand, the surgery tends to lower the outer canthus, increasing the negative slant of the fissure. The postoperative changes induced by the frontofacial monobloc advancement need to be taken into account when the surgery is going to be performed.
Resumo:
We present a new technique for obtaining model fittings to very long baseline interferometric images of astrophysical jets. The method minimizes a performance function proportional to the sum of the squared difference between the model and observed images. The model image is constructed by summing N(s) elliptical Gaussian sources characterized by six parameters: two-dimensional peak position, peak intensity, eccentricity, amplitude, and orientation angle of the major axis. We present results for the fitting of two main benchmark jets: the first constructed from three individual Gaussian sources, the second formed by five Gaussian sources. Both jets were analyzed by our cross-entropy technique in finite and infinite signal-to-noise regimes, the background noise chosen to mimic that found in interferometric radio maps. Those images were constructed to simulate most of the conditions encountered in interferometric images of active galactic nuclei. We show that the cross-entropy technique is capable of recovering the parameters of the sources with a similar accuracy to that obtained from the very traditional Astronomical Image Processing System Package task IMFIT when the image is relatively simple (e. g., few components). For more complex interferometric maps, our method displays superior performance in recovering the parameters of the jet components. Our methodology is also able to show quantitatively the number of individual components present in an image. An additional application of the cross-entropy technique to a real image of a BL Lac object is shown and discussed. Our results indicate that our cross-entropy model-fitting technique must be used in situations involving the analysis of complex emission regions having more than three sources, even though it is substantially slower than current model-fitting tasks (at least 10,000 times slower for a single processor, depending on the number of sources to be optimized). As in the case of any model fitting performed in the image plane, caution is required in analyzing images constructed from a poorly sampled (u, v) plane.
Resumo:
Emission line ratios have been essential for determining physical parameters such as gas temperature and density in astrophysical gaseous nebulae. With the advent of panoramic spectroscopic devices, images of regions with emission lines related to these physical parameters can, in principle, also be produced. We show that, with observations from modern instruments, it is possible to transform images taken from density-sensitive forbidden lines into images of emission from high- and low-density clouds by applying a transformation matrix. In order to achieve this, images of the pairs of density-sensitive lines as well as the adjacent continuum have to be observed and combined. We have computed the critical densities for a series of pairs of lines in the infrared, optical, ultraviolet and X-rays bands, and calculated the pair line intensity ratios in the high- and low-density limit using a four- and five-level atom approximation. In order to illustrate the method, we applied it to Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (GMOS-IFU) data of two galactic nuclei. We conclude that this method provides new information of astrophysical interest, especially for mapping low- and high-density clouds; for this reason, we call it `the ld/hd imaging method`.
Resumo:
Astronomy has evolved almost exclusively by the use of spectroscopic and imaging techniques, operated separately. With the development of modern technologies, it is possible to obtain data cubes in which one combines both techniques simultaneously, producing images with spectral resolution. To extract information from them can be quite complex, and hence the development of new methods of data analysis is desirable. We present a method of analysis of data cube (data from single field observations, containing two spatial and one spectral dimension) that uses Principal Component Analysis (PCA) to express the data in the form of reduced dimensionality, facilitating efficient information extraction from very large data sets. PCA transforms the system of correlated coordinates into a system of uncorrelated coordinates ordered by principal components of decreasing variance. The new coordinates are referred to as eigenvectors, and the projections of the data on to these coordinates produce images we will call tomograms. The association of the tomograms (images) to eigenvectors (spectra) is important for the interpretation of both. The eigenvectors are mutually orthogonal, and this information is fundamental for their handling and interpretation. When the data cube shows objects that present uncorrelated physical phenomena, the eigenvector`s orthogonality may be instrumental in separating and identifying them. By handling eigenvectors and tomograms, one can enhance features, extract noise, compress data, extract spectra, etc. We applied the method, for illustration purpose only, to the central region of the low ionization nuclear emission region (LINER) galaxy NGC 4736, and demonstrate that it has a type 1 active nucleus, not known before. Furthermore, we show that it is displaced from the centre of its stellar bulge.
Resumo:
A novel mathematical framework inspired on Morse Theory for topological triangle characterization in 2D meshes is introduced that is useful for applications involving the creation of mesh models of objects whose geometry is not known a priori. The framework guarantees a precise control of topological changes introduced as a result of triangle insertion/removal operations and enables the definition of intuitive high-level operators for managing the mesh while keeping its topological integrity. An application is described in the implementation of an innovative approach for the detection of 2D objects from images that integrates the topological control enabled by geometric modeling with traditional image processing techniques. (C) 2008 Published by Elsevier B.V.