147 resultados para Calcium wave
Resumo:
Ion channels are pores formed by proteins and responsible for carrying ion fluxes through cellular membranes. The ion channels can assume conformational states thereby controlling ion flow. Physically, the conformational transitions from one state to another are associated with energy barriers between them and are dependent on stimulus, such as, electrical field, ligands, second messengers, etc. Several models have been proposed to describe the kinetics of ion channels. The classical Markovian model assumes that a future transition is independent of the time that the ion channel stayed in a previous state. Others models as the fractal and the chaotic assume that the rate of transitions between the states depend on the time that the ionic channel stayed in a previous state. For the calcium activated potassium channels of Leydig cells the R/S Hurst analysis has indicated that the channels are long-term correlated with a Hurst coefficient H around 0.7, showing a persistent memory in this kinetic. Here, we applied the R/S analysis to the opening and closing dwell time series obtained from simulated data from a chaotic model proposed by L. Liebovitch and T. Toth [J. Theor. Biol. 148, 243 (1991)] and we show that this chaotic model or any model that treats the set of channel openings and closings as independent events is inadequate to describe the long-term correlation (memory) already described for the experimental data. (C) 2008 American Institute of Physics.
Resumo:
The Ca II triplet (CaT) feature in the near-infrared has been employed as a metallicity indicator for individual stars as well as integrated light of Galactic globular clusters (GCs) and galaxies with varying degrees of success, and sometimes puzzling results. Using the DEIMOS multi-object spectrograph on Keck we obtain a sample of 144 integrated light spectra of GCs around the brightest group galaxy NGC 1407 to test whether the CaT index can be used as ametallicity indicator for extragalactic GCs. Different sets of single stellar population models make different predictions for the behavior of the CaT as a function of metallicity. In this work, the metallicities of the GCs around NGC 1407 are obtained from CaT index values using an empirical conversion. The measured CaT/metallicity distributions show unexpected features, the most remarkable being that the brightest red and blue GCs have similar CaT values despite their large difference in mean color. Suggested explanations for this behavior in the NGC 1407 GC system are (1) the CaT may be affected by a population of hot blue stars, (2) the CaT may saturate earlier than predicted by the models, and/or (3) color may not trace metallicity linearly. Until these possibilities are understood, the use of the CaT as a metallicity indicator for the integrated spectra of extragalactic GCs will remain problematic.
Resumo:
The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.
Resumo:
We have performed a systematic study of the magnetic properties of a series of ferrimagnetic nanoparticles of Mg(x)Fe(3-x)O(4) (0.8 <= x <= 1.5) prepared by the combustion reaction method. The magnetization data can be well fitted by Bloch's law with T(3/2). Bloch's constant B determined from the fitting procedure was found to increase with Mg content x from similar to 3.09 X 10(-5) K(-3/2) for x = 0.8 to 6.27 X 10(-5) K(-3/2) for x=1.5. The exchange integral J(AB) and the spin-wave stiffness constant D of Mg(x)Fe(3-x)O(4) nanoparticles were also determined as similar to 0.842 and 0.574 meV and 296 and 202 meV angstrom(2) for specimens with x=0.8 and 1.5, respectively. These results are discussed in terms of cation redistribution among A and B sites on these nanostructured spinel ferrites. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3359709]
Resumo:
High wave-vector spin waves in ultrathin Fe/W(110) films up to 20 monolayers (MLs) thick have been studied using spin-polarized electron energy-loss spectroscopy. An unusual nonmonotonous dependence of the spin wave energies on the film thickness is observed, featuring a pronounced maximum at 2 ML coverage. First-principles theoretical study reveals the origin of this behavior to be in the localization of the spin waves at the surface of the film, as well as in the properties of the interlayer exchange coupling influenced by the hybridization of the electron states of the film and substrate and by the strain.
Resumo:
We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor, and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.
Resumo:
We propose a model for D(+)->pi(+)pi(-)pi(+) decays following experimental results which indicate that the two-pion interaction in the S wave is dominated by the scalar resonances f(0)(600)/sigma and f(0)(980). The weak decay amplitude for D(+)-> R pi(+), where R is a resonance that subsequently decays into pi(+)pi(-), is constructed in a factorization approach. In the S wave, we implement the strong decay R ->pi(+)pi(-) by means of a scalar form factor. This provides a unitary description of the pion-pion interaction in the entire kinematically allowed mass range m(pi pi)(2) from threshold to about 3 GeV(2). In order to reproduce the experimental Dalitz plot for D(+)->pi(+)pi(-)pi(+), we include contributions beyond the S wave. For the P wave, dominated by the rho(770)(0), we use a Breit-Wigner description. Higher waves are accounted for by using the usual isobar prescription for the f(2)(1270) and rho(1450)(0). The major achievement is a good reproduction of the experimental m(pi pi)(2) distribution, and of the partial as well as the total D(+)->pi(+)pi(-)pi(+) branching ratios. Our values are generally smaller than the experimental ones. We discuss this shortcoming and, as a by-product, we predict a value for the poorly known D ->sigma transition form factor at q(2)=m pi(2).
Resumo:
We consider the gravitational recoil due to nonreflection-symmetric gravitational wave emission in the context of axisymmetric Robinson-Trautman spacetimes. We show that regular initial data evolve generically into a final configuration corresponding to a Schwarzschild black hole moving with constant speed. For the case of (reflection-)symmetric initial configurations, the mass of the remnant black hole and the total energy radiated away are completely determined by the initial data, allowing us to obtain analytical expressions for some recent numerical results that have appeared in the literature. Moreover, by using the Galerkin spectral method to analyze the nonlinear regime of the Robinson-Trautman equations, we show that the recoil velocity can be estimated with good accuracy from some asymmetry measures (namely the first odd moments) of the initial data. The extension for the nonaxisymmetric case and the implications of our results for realistic situations involving head-on collision of two black holes are also discussed.
Resumo:
We study rf spectroscopy of a lithium gas with the goal to explore the possibilities for photoemission spectroscopy of a strongly interacting p-wave Fermi gas. Radio-frequency spectra of quasibound p-wave molecules and of free atoms in the vicinity of the p-wave Feshbach resonance located at 159.15G are presented. The spectra are free of detrimental final-state effects. The observed relative magnetic-field shifts of the molecular and atomic resonances confirm earlier measurements realized with direct rf association. Furthermore, evidence of molecule production by adiabatically ramping the magnetic field is observed. Finally, we propose the use of a one-dimensional optical lattice to study anisotropic superfluid gaps as most direct proof of p-wave superfluidity.
Resumo:
Structural and optical properties of stable glasses in the Y(2)O(3)-CaO-B(2)O(3) system, containing the same Y/Ca ratio as the YCa(4)O(BO(3))(3) (YCOB) crystal, were determined from Raman and reflectance infrared spectroscopy. Changes in optical functions with composition are associated with an increase in the number of non-bridging oxygen and to calcium/yttrium oxides content. Refractive indexes values (from 1.597 to 1.627 at lambda=2 mu m) are in good agreement with those of the YCOB crystal, an indication that these glasses are potential candidates for optical applications due to their ease of shaping as large bulk samples or fibers.
Resumo:
In this work we present a comprehensive study of the spectroscopic and thermo-optical properties of a set of samples with composition xNd(2)O(3)-(5-x)Y(2)O(3-)40CaO-55B(2)O(3) (0 <= x <= 1.0 mol%). Their fluorescence quantum efficiency (eta) values were determined using the thermal lens technique and the dependence on the ionic concentration was analyzed in terms of energy transfer processes, based on the Forster-Dexter model of multipolar ion-ion interactions. A maximum eta = 0.54 was found to be substantially higher than for yttrium aluminoborate crystals and glasses with comparable Nd(3+) content. As for the thermo-optical properties of yttrium calcium borate, they are comparable to other well-known laser glasses. The obtained energy transfer microparameters and the weak dependence of. on the Nd(3+) concentration with a high optimum Nd(3+) concentration put this system as a strong candidate for photonics applications. (C) 2011 American Institute of Physics. [doi:10.1063/1.3567091]
Resumo:
Measurement of the transmitted intensity from a coherent monomode light source through a series of subwavelength slit arrays in Ag films, with varying array pitch and number of slits, demonstrates enhancement (suppression) by factors of as much as 6 (9) when normalized to the transmission efficiency of an isolated slit. Pronounced minima in the transmitted intensity are observed at array pitches corresponding to lambda(SPP), 2 lambda(SPP), and 3 lambda(SPP), where lambda(SPP) is the wavelength of the surface plasmon polariton (SPP). The position of these minima arises from destructive interference between incident propagating waves and pi-phase-shifted SPP waves. Increasing the number of slits to four or more does not increase appreciably the per-slit transmission intensity. A simple interference model fits well the measured transmitted intensity profile.
Resumo:
In this paper we establish a method to obtain the stability of periodic travelling-wave solutions for equations of Korteweg-de Vries-type u(t) + u(p)u(x) - Mu(x) = 0, with M being a general pseudodifferential operator and where p >= 1 is an integer. Our approach uses the theory of totally positive operators, the Poisson summation theorem, and the theory of Jacobi elliptic functions. In particular we obtain the stability of a family of periodic travelling waves solutions for the Benjamin Ono equation. The present technique gives a new way to obtain the existence and stability of cnoidal and dnoidal waves solutions associated with the Korteweg-de Vries and modified Korteweg-de Vries equations, respectively. The theory has prospects for the study of periodic travelling-wave solutions of other partial differential equations.
Resumo:
Sedentary consumers play an important role on populations of prey and, hence, their patterns of abundance, distribution and coexistence on shores are important to evaluate their potential influence on ecosystem dynamics. Here, we aimed to describe their spatio-temporal distribution and abundance in relation to wave exposure in the intertidal rocky shores of the south-west Atlantic to provide a basis for further understanding of ecological processes in this system. The abundance and composition of the functional groups of sessile organisms and sedentary consumers were taken by sampling the intertidal of sheltered and moderately exposed shores during a period of one year. The sublittoral fringe of sheltered areas was dominated by macroalgae, while the low midlittoral was dominated by bare rock and barnacles. In contrast, filter-feeding animals prevailed at exposed shores, probably explaining the higher abundance of the predator Stramonita haemastoma at these locations. Limpets were more abundant at the midlittoral zone of all shores while sea urchins were exclusively found at the sublittoral fringe of moderately exposed shores, therefore, adding grazing pressure on these areas. The results showed patterns of coexistence, distribution and abundance of those organisms in this subtropical area, presumably as a result of wave action, competition and prey availability. It also brought insights on the influence of top-down and bottom-up processes in this area.
Resumo:
Stream discharge-concentration relationships are indicators of terrestrial ecosystem function. Throughout the Amazon and Cerrado regions of Brazil rapid changes in land use and land cover may be altering these hydrochemical relationships. The current analysis focuses on factors controlling the discharge-calcium (Ca) concentration relationship since previous research in these regions has demonstrated both positive and negative slopes in linear log(10)discharge-log(10)Ca concentration regressions. The objective of the current study was to evaluate factors controlling stream discharge-Ca concentration relationships including year, season, stream order, vegetation cover, land use, and soil classification. It was hypothesized that land use and soil class are the most critical attributes controlling discharge-Ca concentration relationships. A multilevel, linear regression approach was utilized with data from 28 streams throughout Brazil. These streams come from three distinct regions and varied broadly in watershed size (< 1 to > 10(6) ha) and discharge (10(-5.7)-10(3.2) m(3) s(-1)). Linear regressions of log(10)Ca versus log(10)discharge in 13 streams have a preponderance of negative slopes with only two streams having significant positive slopes. An ANOVA decomposition suggests the effect of discharge on Ca concentration is large but variable. Vegetation cover, which incorporates aspects of land use, explains the largest proportion of the variance in the effect of discharge on Ca followed by season and year. In contrast, stream order, land use, and soil class explain most of the variation in stream Ca concentration. In the current data set, soil class, which is related to lithology, has an important effect on Ca concentration but land use, likely through its effect on runoff concentration and hydrology, has a greater effect on discharge-concentration relationships.