105 resultados para C18 bonded silica gel
Resumo:
In this paper we present some result on sol-gel derived silica-hafnia systems. In particular we focus on fabrication, morphological and spectroscopic assessment of Er(3+)-activated thin films. Two examples of silica-hafnia-derived waveguiding glass ceramics, prepared by top-down and bottom-up techniques are reported, and the main optical properties are discussed. Finally, some properties of activated microspherical resonators, having a silica core, obtained by melting the end of a telecom fiber, coated with an Er(3+)-doped 70SiO(2)-30HfO(2) film, are presented. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Large pore ordered mesoporous silica FDU-1 with three-dimensional (3D) face-centered cubic, Fm3m arrangement of rnesopores, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)), tetraethyl orthosilicate (TEOS) and trimethyl-benzene (TMB). Large pore FDU-1 silica was obtained by using the following gel composition 1TEOS:0.00735B50-6600:0.00735TMB:6HCl:155H(2)O. The pristine material exhibited a BET specific surface area of 684 m(2) g(-1), total pore volume of 0.89 cm(3) g(-1), external surface area of 49 m(2) g(-1) and microporous volume of 0.09 cm(3) g(-1). The enzyme activity was determined by the Flow Injection Analysis-Chemiluminescence (FIA-CL) method. For GOD immobilized on the FDU-1 silica, GOD supernatant and GOD solution, the FIA-CL results were 9.0, 18.6 and 34.0 U, respectively. The value obtained for the activity of the GOD solution with FIA-CL method is in agreement with the 35 U, obtained by spectrophotometry. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this work, a sol-gel route was used to prepare Y(0.9)Er(0.1)Al(3)(BO(3))(4) glassy thin films by spin-coating technique looking for the preparation and optimization of planar waveguides for integrated optics. The films were deposited on silica and silicon substrates using stable sols synthesized by the sol-gel process. Deposits with thicknesses ranging between 520 and 720 nm were prepared by a multi-layer process involving heat treatments at different temperatures from glass transition to the film crystallization and using heating rates of 2 degrees C/min. The structural characterization of the layers was performed by using grazing incidence X-ray diffraction and Raman spectroscopy as a function of the heat treatment. Microstructural evolution in terms of annealing temperatures was followed by high resolution scanning electron microscopy and atomic force microscopy. Optical transmission spectra were used to determine the refractive index and the film thicknesses through the envelope method. The optical and guiding properties of the films were studied by m-line spectroscopy. The best films were monomode with 620 nm thickness and a refractive index around 1.664 at 980 nm wavelength. They showed good waveguiding properties with high light-coupling efficiency and low propagation loss at 632.8 and 1550 nm of about 0.88 dB/cm. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Pb(2)CrO(5) nanoparticles were embedded in an amorphous SiO(2) matrix by the sol-gel process. The pH and heat treatment effects were evaluated in terms of structural, microstructural and optical properties from Pb(2)CrO(5)/SiO(2) compounds. X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS), and diffuse reflectance techniques were employed. Kubelka-Munk theory was used to calculate diffuse reflectance spectra that were compared to the experimental results. Finally, colorimetric coordinates of the Pb(2)CrO(5)/SiO(2) compounds were shown and discussed. In general, an acid pH initially dissolves Pb(2)CrO(5) nanoparticles and following heat treatment at 600 A degrees C crystallized into PbCrO(4) composition with grain size around 6 nm in SiO(2) matrix. No Pb(2)CrO(5) solubilization was observed for basic pH. These nanoparticles were incorporated in silica matrix showing a variety of color ranging from yellow to orange.
Resumo:
Photopolymerized sol-gel monolithic columns for use in capillary electrochromatography were prepared in 125 mu m i.d. polyacrylate-coated fused-silica capillaries. The polyacrylate-coating, unlike the polyimide one, is transparent to the radiation used (approximate to 370 nm), and thus, no coating removal is necessary. This is a very important particularity since intrinsic capillary column characteristics, such as flexibility and mechanical resistance, are unchanged. A mixture containing metacryloxypropyltrimethoxysilane (MPTMS) as the polymeric precursor, hydrochloric acid as the catalyst, toluene as the porogen and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (Irgacure 819) as the photoinitiator was irradiated at 370 nm for 20 min inside the capillaries to prepare the columns through sol-gel approach. The versatility and viability of the use of polyacrilate as a new capillary external coating were shown through preparation of two columns under different conditions, which were tested in electrochromatography for separation of standard mixture containing thiourea (marker compound), propylbenzene, phenanthrene and pyrene. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE: The aim of this study was to evaluate the capacity of potassium oxalate, fluoride gel and two kinds of propolis gel to reduce the hydraulic conductance of dentin, in vitro. MATERIAL AND METHODS: The methodology used for the measurement of hydraulic conductance of dentin in the present study was based on a model proposed in literature. Thirty-six 1-mm-thick dentin discs, obtained from extracted human third molars were divided into 4 groups (n=9). The groups corresponded to the following experimental materials: GI-10% propolis gel, pH 4.1; GII-30% propolis gel; GIII-3% potassium oxalate gel, pH 4,1; and GIV-1.23% fluoride gel, pH 4.1, applied to the dentin under the following surface conditions: after 37% phosphoric acid and before 6% citric acid application. The occluding capacity of the dentin tubules was evaluated using scanning electron microscopy (SEM) at ×500, ×1,000 and ×2,000 magnifications. Data were analyzed statistically by two-way ANOVA and Tukey's test at 5% significance level. RESULTS: Groups I, II, III, IV did not differ significantly from the others in any conditions by reducing in hydraulic conductance. The active agents reduced dentin permeability; however they produced the smallest reduction in hydraulic conductance when compared to the presence of smear layer (P<0.05). The effectiveness in reducing dentin permeability did not differ significantly from 10% or 30% propolis gels. SEM micrographs revealed that dentin tubules were partially occluded after treatment with propolis. CONCLUSIONS: Under the conditions of this study, the application of 10% and 30% propolis gels did not seem to reduce the hydraulic conductance of dentin in vitro, but it showed capacity of partially obliterating the dentin tubules. Propolis is used in the treatment of different oral problems without causing significant great collateral effects, and can be a good option in the treatment of patients with dentin sensitivity.
Resumo:
Bonded maxillary expansion appliances have been suggested to control increases in the vertical dimension of the face after rapid maxillary expansion (RME). However, there is still no consensus in the literature about its real skeletal effects. The purpose of this prospective study was to evaluate, longitudinally, the vertical and sagittal cephalometric alterations after RME performed with bonded maxillary expansion appliance. The sample consisted of 26 children, with a mean age of 8.7 years (range: 6.9-10.9 years), with posterior skeletal crossbite and indication for RME. After maxillary expansion, the bonded appliance was used as a fixed retention for 3.4 months, being replaced by a removable retention subsequently. The cephalometric study was performed onto lateral radiographs, taken before treatment was started, and again 6.3 months after removing the bonded appliance. Intra-group comparison was made using paired t test. The results showed that there were no significant sagittal skeletal changes at the end of treatment. There was a small vertical skeletal increase in five of the eleven evaluated cephalometric measures. The maxilla displaced downward, but it did not modify the facial growth patterns or the direction of the mandible growth. Under the specific conditions of this research, it may be concluded that RME with acrylic bonded maxillary expansion appliance did promote signifciant vertical or sagittal cephalometric alterations. The vertical changes found with the use of the bonded appliance were small and probably transitory, similar to those occurred with the use of banded expansion appliances.
Resumo:
This study analyzed the reaction layer and measured the marginal crown fit of cast titanium applied to different phosphate-bonded investments, prepared under the following conditions (liquid concentration/casting temperature): Rema Exakt (RE) - 100%/237°C, 75%/287°C, Castorit Super C (CS)-100%/70°C, 75%/141°C and Rematitan Plus (RP)- 100%/430°C (special to titanium cast, as the control group). The reaction layer was studied using the Vickers hardness test, and analyzed by two way ANOVA and Tukey's HSD tests (α = 0.05). Digital photographs were taken of the crowns seated on the die, the misfit was measured using an image analysis system and One-way ANOVA, and Tukey's test was applied (α = 0.05). The hardness decreased from the surface (601.17 VHN) to 150 μm (204.03 VHN). The group CS 75%/141°C presented higher hardness than the other groups, revealing higher surface contamination, but there were no differences among the groups at measurements deeper than 150 μm. The castings made with CS - 100%/70°C presented the lowest levels of marginal misfit, followed by RE -100%/237°C. The conventional investments CS (100%) and RE (100%) showed better marginal fit than RP, but the CS (75%) had higher surface contamination.
Resumo:
The aim of this investigation was to monitor metronidazole concentrations in the gingival crevicular fluid (GCF) collected from periodontal pockets of dogs after treatment with an experimental 15% metronidazole gel. Five dogs had periodontitis induced by cotton ligatures placed subgingivally and maintained for a 30-day period. After the induction period, only pockets with 4 mm or deeper received the gel. Each pocket was filled up to the gingival margin by means of a syringe with a blunt-end needle. GCF was collected in paper strips and quantified in an electronic device before and after 15 minutes, 1 h, 6 h, 24 h and 48 h of gel administration. The GCF samples were assayed for metronidazole content by means of a high performance liquid chromatography method. Concentrations of metronidazole in the GCF of the 5 dogs (mean ± SD, in µg/mL) were 0 ± 0 before gel application and 47,185.75 ± 24,874.35 after 15 minutes, 26,457.34 ± 25,516.91 after 1 h, 24.18 ± 23.11 after 6 h, 3.78 ± 3.45 after 24 h and 3.34 ± 5.54 after 48 h. A single administration of the 15% metronidazole gel released the drug in the GCF of dogs in levels several-fold higher than the minimum inhibitory concentration for some periodontopathogens grown in subgingival biofilms for up to one hour, but metronidazole could be detected in the GCF at least 48 hours after the gel application.
Resumo:
The aims of this study were to demonstrate the synthesis of an experimental glass ionomer cement (GIC) by the non-hydrolytic sol-gel method and to evaluate its biocompatibility in comparison to a conventional glass ionomer cement (Vidrion R). Four polyethylene tubes containing the tested cements were implanted in the dorsal region of 15 rats, as follows: GI - experimental GIC and GII - conventional GIC. The external tube walls was considered the control group (CG). The rats were sacrificed 7, 21 and 42 days after implant placement for histopathological analysis. A four-point (I-IV) scoring system was used to graduate the inflammatory reaction. Regarding the experimental GIC sintherization, thermogravimetric and x-ray diffraction analysis demonstrated vitreous material formation at 110oC by the sol-gel method. For biocompatibility test, results showed a moderate chronic inflammatory reaction for GI (III), severe for GII (IV) and mild for CG (II) at 7 days. After 21 days, GI presented a mild reaction (II); GII, moderate (III) and CG, mild (II). At 42 days, GI showed a mild/absent inflammatory reaction (II to I), similar to GII (II to I). CG presented absence of chronic inflammatory reaction (I). It was concluded that the experimental GIC presented mild/absent tissue reaction after 42 days, being biocompatible when tested in the connective tissue of rats.
Resumo:
This in vitro study aimed to analyze the effect of different parameters of phototherapy with low intensity laser on the viability of human dental pulp fibroblasts under the effect of substances released by bleaching gel. Cells were seeded into 96 wells plates (1 x 10³ cells/well) and placed in contact with culture medium conditioned by a 35 % hydrogen peroxide bleaching gel for 40 minutes, simulating the clinical condition of the in-office bleaching treatment. Cells cultured in ideal growth conditions served as positive control group (PC), and the cells grown in conditioned medium and non-irradiated served as negative control group (NC). Cells grown in conditioned medium were submitted to a single irradiation with a diode laser (40 mW, 0.04 cm²) emitting at visible red (660 nm; RL) or near infrared (780 nm; NIR) using punctual technique, in contact mode and energy densities of 4, 6 or 10 J/cm². The cell viability was analyzed through the MTT reduction assay immediately and 24 hours after the irradiation. The data was compared by ANOVA followed by the Tukey's test (p < 0.05). The cell viability increased significantly in 24 hours within each group. The PC presented cell viability significantly higher than NC in both experimental times. Only the NIR/10 J/cm² group presented cell viability similar to that of PC in 24 hours. The phototherapy with low intensity laser in defined parameters is able to compensate the cytotoxic effects of substances released by 35 % hydrogen peroxide bleaching gel.
Resumo:
PURPOSE: This clinical study evaluated the periodontal status of patients with bonded retainers as compared to a non-treated control group. METHODS: Forty dental students were included in the sample and divided into the following two groups: 1) a test group of 20 subjects that, after orthodontic treatment, have been bonded retainer users for at least 2 years and 2) a control group of 20 patients that never experienced orthodontic treatment nor used any bonded retainer. The region associated with the retainer in the test group and the lower canine-to-canine region in the control group were examined according to the following clinical parameters: plaque index (PI), bleeding on probing (BOP), gingival recession (GR), clinical attachment level (CAL) and probing depth (PD). RESULTS: No differences were observed for GR or BOP (P>0.05). In contrast, the test group showed higher values of CAL and PD at proximal sites when compared to controls (P<0.05). In addition, IP was significantly increased at buccal and lingual sites (P<0.05). CONCLUSION: The placement of orthodontic bonded retainers negatively affected periodontal health, resulting in increased PI, PD and CAL.
Resumo:
The aim of the present work was to characterize changes in the protein profile throughout seed development in O. catharinensis, a recalcitrant species, by two-dimensional gel electrophoresis. Protein extraction was undertaken by using a thiourea/urea buffer, followed by a precipitation step with 10% TCA. Comparative analysis during seed development showed that a large number of proteins were exclusively detected in each developmental stage. The cotyledonary stage, which represents the transition phase between embryogenesis and the beginning of metabolism related to maturation, presents the highest number of stage-specific spots. Protein identification, through MS/MS analysis, resulted in the identification of proteins mainly related to oxidative metabolism and storage synthesis. These findings contribute to a better understanding of protein metabolism during seed development in recalcitrant seeds, besides providing information on established markers that could be useful in defining and improving somatic embryogenesis protocols, besides monitoring the development of somatic embryos in this species.
Resumo:
Many routes for extracting silica from rice hulls are based on direct calcining. These methods, though, often produce silica contaminated with inorganic impurities. This work presents the study of a strategy for obtaining silica from rice hulls with a purity level adequate for applications in electronics. The technique is based on two leaching steps, using respectively aqua regia and Piranha solutions, which extract the organic matrix and inorganic impurities. The material was characterized by Fourier-transform infrared spectroscopy (FTIR), powder x-ray diffraction (XRD), x-ray fluorescence (XRF), scanning electron microscopy (SEM), particle size analysis by laser diffraction (LPSA) and thermal analysis.
Resumo:
Background: Silica particles cationized by dioctadecyldimethylammonium bromide (DODAB) bilayer were previously described. This work shows the efficiency of these particulates for antigen adsorption and presentation to the immune system and proves the concept that silica-based cationic bilayers exhibit better performance than alum regarding colloid stability and cellular immune responses for vaccine design. Results: Firstly, the silica/DODAB assembly was characterized at 1 mM NaCl, pH 6.3 or 5 mM Tris. HCl, pH 7.4 and 0.1 mg/ml silica over a range of DODAB concentrations (0.001-1 mM) by means of dynamic light scattering for particle sizing and zeta-potential analysis. 0.05 mM DODAB is enough to produce cationic bilayer-covered particles with good colloid stability. Secondly, conditions for maximal adsorption of bovine serum albumin (BSA) or a recombinant, heat-shock protein from Mycobacterium leprae (18 kDa-hsp) onto DODAB-covered or onto bare silica were determined. At maximal antigen adsorption, cellular immune responses in vivo from delayed-type hypersensitivity reactions determined by foot-pad swelling tests (DTH) and cytokines analysis evidenced the superior performance of the silica/DODAB adjuvant as compared to alum or antigens alone whereas humoral response from IgG in serum was equal to the one elicited by alum as adjuvant. Conclusion: Cationized silica is a biocompatible, inexpensive, easily prepared and possibly general immunoadjuvant for antigen presentation which displays higher colloid stability than alum, better performance regarding cellular immune responses and employs very low, micromolar doses of cationic and toxic synthetic lipid.