42 resultados para Bronchoalveolar
Resumo:
The impact of obesity on the inflammatory process has been described in asthma, however little is known about the influence of diet-induced obesity on lung remodeling. For this purpose, 56 recently weaned A/J mice were randomly divided into 2 groups. In the C group, mice were fed a standard chow diet, while OB animals received isocaloric high-fat diet to reach 1.5 of the mean body weight of C. After 12 weeks, each group was further randomized to be sensitized and challenged with ovalbumin (OVA) or saline. Twenty-four hours after the last challenge, collagen fiber content in airways and lung parenchyma, the volume proportion of smooth muscle-specific actin in alveolar ducts and terminal bronchiole, and the number of eosinophils in bronchoalveolar lavage fluid were higher in OB-OVA than C-OVA. In conclusion, diet-induced obesity enhanced lung remodeling resulting in higher airway responsiveness in the present experimental chronic allergic asthma. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Analysis of fuel emissions is crucial for understanding the pathogenesis of mortality because of air pollution. The objective of this study is to assess cardiovascular and inflammatory toxicity of diesel and biodiesel particles. Mice were exposed to fuels for 1 h. Heart rate (HR), heart rate variability, and blood pressure were obtained before exposure, as well as 30 and 60 min after exposure. After 24 h, bronchoalveolar lavage, blood, and bone marrow were collected to evaluate inflammation. B100 decreased the following emission parameters: mass, black carbon, metals, CO, polycyclic aromatic hydrocarbons, and volatile organic compounds compared with B50 and diesel; root mean square of successive differences in the heart beat interval increased with diesel (p < 0.05) compared with control; low frequency increased with diesel (p < 0.01) and B100 (p < 0.05) compared with control; HR increased with B100 (p < 0.05) compared with control; mean corpuscular volume increased with B100 compared with diesel (p < 0.01), B50, and control (p < 0.001); mean corpuscular hemoglobin concentration decreased with B100 compared with B50 (p < 0.001) and control (p < 0.05); leucocytes increased with B50 compared with diesel (p < 0.05); platelets increased with B100 compared with diesel and control (p < 0.05); reticulocytes increased with B50 compared with diesel, control (p < 0.01), and B100 (p < 0.05); metamyelocytes increased with B50 and B100 compared with diesel (p < 0.05); neutrophils increased with diesel and B50 compared with control (p < 0.05); and macrophages increased with diesel (p < 0.01), B50, and B100 (p < 0.05) compared with control. Biodiesel was more toxic than diesel because it promoted cardiovascular alterations as well as pulmonary and systemic inflammation.
Resumo:
Diesel exhaust is the major source of ultrafine particles released during traffic-related pollution. Subjects with chronic respiratory diseases are at greater risk for exacerbations during exposure to air pollution. This study evaluated the effects of subchronic exposure to a low-dose of diesel exhaust particles (DEP). Sixty male BALB/c mice were divided into two groups: (a) Saline: nasal instillation of saline (n = 30); and (b) DEP: nasal instillation of 30 mu g of DEP/10 mu l of saline (n = 30). Nasal instillations were performed 5 days a week, over 30 and 60 days. Animals were anesthetized with pentobarbital sodium (50 mg/kg intraperitoneal [i.p.]) and sacrificed by exsanguination. Bronchoalveolar lavage (BAL) fluid was performed to evaluate the inflammatory cell count and the concentrations of the interleukin (IL)-4, IL-10, and IL-13 by enzyme-linked immunosorbent assay (ELISA). The gene expression of oligomeric mucus/gel-forming (Muc5ac) was evaluated by real-time polymerase chain reaction (PCR). Histological analysis in the nasal septum and bronchioles was used to evaluate the bronchial and nasal epithelium thickness as well as the acidic and neutral nasal mucus content. The saline group (30 and 60 days) did not show any changes in any of the parameters. However, the instillation of DEP over 60 days increased the expression of Muc5ac in the lungs and the acid mucus content in the nose compared with the 30-day treatment, and it increased the total leukocytes in the BAL and the nasal epithelium thickness compared with saline for 60 days. Cytokines concentrations in the BAL were detectable, with no differences among the groups. Our data suggest that a low-dose of DEP over 60 days induces respiratory tract inflammation.
Resumo:
We investigated the effects of salbutamol on the markers of epithelial function in a murine model of chronic allergic pulmonary inflammation by recording the ciliary beat frequency (CBF) and the transepithelial potential difference (PD) in vivo. Mice were sensitized and received four challenges of ovalbumin (OVA group) or 0.9% saline (control group). Forty-eight hours after the 4th inhalation, we observed eosinophilia in the bronchoalveolar lavage and epithelium remodeling with stored acid mucus in the OVA group (P < 0.001). No difference in the baseline CBF was noticed between the groups; however, the OVA group had a significantly lower baseline PD (P = 0.013). Salbutamol increased the CBF in all groups studied, and the dose response curve to salbutamol increased the PD in the OVA group from 10(-4) M to 10(-2) M. We suggest that salbutamol affects the CBF and the depth of the periciliary layer, which, in great part, determines the ability of the cilia to propel the mucus layer. This effect may have a positive impact on airway mucociliary transport in asthma and may have clinical implications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Intrapleural instillation of talc has been used in the treatment of recurrent pleural effusions but can, in rare instances, result in respiratory failure. Side-effects seem to be related to composition, size and inflammatory power of talc particles. The aim of this study was to evaluate the inflammatory response to intrapleural injection of talc containing small particles (ST) or talc containing particles of mixed size (MT). 100 rabbits received intrapleural talc, 50 with ST (median 6.41 mu m) and 50 with MT median 21.15 mu m); the control group was composed of 35 rabbits. Cells, lactate dehydrogenase, C-reactive protein (CRIP), interleukin (IL)-8 and vascular endothelial growth factor were evaluated in serum and bronchoalveolar lavage at 6, 24, 48, 72 and 96 h. Lung histology and the presence of talc were also analysed. Statistics were performed using ANOVA and an unpaired t-test. Most of the parameters showed greater levels in the animals injected with talc than in the controls, suggesting a systemic and pulmonary response. Higher serum levels of CRP and IL-8 were observed in the animals injected with ST. Talc particles were observed in both lungs with no differences between groups. Lung cell infiltrate was more evident in the ST group. In conclusion, talc with larger particles should be the preferred choice in clinical practice in order to induce safer pleurodesis.
Resumo:
Background and objective The time course of cardiopulmonary alterations after pulmonary embolism has not been clearly demonstrated and nor has the role of systemic inflammation on the pathogenesis of the disease. This study aimed to evaluate over 12 h the effects of pulmonary embolism caused by polystyrene microspheres on the haemodynamics, lung mechanics and gas exchange and on interleukin-6 production. Methods Ten large white pigs (weight 35-42 kg) had arterial and pulmonary catheters inserted and pulmonary embolism was induced in five pigs by injection of polystyrene microspheres (diameter similar to 300 mu mol l(-1)) until a value of pulmonary mean arterial pressure of twice the baseline was obtained. Five other animals received only saline. Haemodynamic and respiratory data and pressure-volume curves of the respiratory system were collected. A bronchoscopy was performed before and 12 h after embolism, when the animals were euthanized. Results The embolism group developed hypoxaemia that was not corrected with high oxygen fractions, as well as higher values of dead space, airway resistance and lower respiratory compliance levels. Acute haemodynamic alterations included pulmonary arterial hypertension with preserved systemic arterial pressure and cardiac index. These derangements persisted until the end of the experiments. The plasma interleukin-6 concentrations were similar in both groups; however, an increase in core temperature and a nonsignificant higher concentration of bronchoalveolar lavage proteins were found in the embolism group. Conclusion Acute pulmonary embolism induced by polystyrene microspheres in pigs produces a 12-h lasting hypoxaemia and a high dead space associated with high airway resistance and low compliance. There were no plasma systemic markers of inflammation, but a higher central temperature and a trend towards higher bronchoalveolar lavage proteins were found. Eur J Anaesthesiol 27:67-76 (C) 2010 European Society of Anaesthesiology.
Resumo:
Objective. The aim of this study was to evaluate the epidemiology of bacterial and fungal pneumonia in lung transplant (LT) recipients and to assess donor-to-host transmission of these microorganisms. Materials and Methods. We retrospectively studied all positive cultures from bronchoalveolar lavage (BAL) of 49 lung transplant recipients and their donors from August 2003 to April 2007. Results. There were 108 episodes of pneumonia during a medium follow-up of 412 days (range, 1-1328 days). The most frequent microorganisms were: Pseudomonas aeruginosa (n = 36; 33.3%), Staphylococcus aureus (n = 29; 26.8%), and Aspergillus spp. (n = 18; 16%). Other fungal infections were due to Fusarium spp., Cryptococcus neoformans, and Paracoccidioides brasiliensis. Of the 31 donors with positive BAL, 15 had S. aureus. There were 21 pretransplant colonized recipients (43%) and 16 of them had suppurative underlying lung disease. P. aeruginosa was the most frequent colonizing organism (59% of pretransplant positive cultures). There were 11 episodes of bacteremia and lungs were the source in 5 cases. Sixteen deaths occurred and 6 (37.5%) were due to infection. Statistical analyses showed association between pretransplant colonizing microorganisms from suppurative lung disease patients and pneumonias after lung transplantation (RR = 4.76; P = .04; 95% CI = 1.02-22.10). No other analyzed factor was significant. Conclusions. Bacterial and fungal infections are frequent and contribute to higher mortality in lung transplant recipients. P. aeruginosa is the most frequent agent of respiratory infections. This study did not observe any impact of donor lung organisms on pneumonia after lung transplantation. Nevertheless, we demonstrated an association between pretransplant colonizing microorganisms and early pneumonias in suppurative lung transplant recipients.
Resumo:
We have investigated the effect of pcDNA3-CpG and pcDNA-IL-12, delivered by intradermal gene gun administration, on the blood/lung eosinophilia, airway hyperresponsiveness as well as the immune response in a murine model of toxocariasis. Our results demonstrated that pcDNA-IL-12 but not pcDNA3-CpG vaccination Led to a persistent tower blood/bronchoalveolar eosinophilia following Toxocaro conis infection, as pcDNA3-CpG led only to an early transient blockage of eosinophil transmigration into bronchoalveolar fluid following T canis infection. Prominent Type-1 immune response was pointed out as the halt-mark of T canis infection following pcDNA-IL-12 vaccination. Outstanding IFN-gamma/IL-4 ratio besides tow levels of IgG1 with subsequent high IgG2a/IgG1 ratio further characterized a Type-1 polarized immunological profile in pcDNA-IL-12-vaccinated animals. Nevertheless, only pcDNA3-CpG was able to prevent airway hyperresponsiveness induced by T canis infection. The persistent airway hyperresponsiveness observed in pcDNA-IL-12-vaccinated animals demonstrated that the airway constriction involved other immunological mediator than those blocked by pcDNA-IL-12. Together, these data indicated that pcDNA-IL-12 and pcDNA3-CpG vaccines have distinct therapeutic benefits regarding the eosinophilic inflammation/airway hyperresponsiveness triggered by T canis infection, suggesting their possible use in further combined therapeutic interventions. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Pulmonary macrophages (PM), which are CD11b/CD18(+) and CD23(+), may be involved in the onset of inflammatory events caused by Paracoccidioides brasiliensis in the lungs. In the present study, we measured the nitric oxide (NO) and interleukin in PM production after intratracheal (i.t.) inoculation of an enriched beta-glucan cell wall fraction from P. brasiliensis (Fraction F1). BALB/c and C57/BL6 (B6) mice were i.t. treated with Fraction F1, and their PM were restimulated in vitro with LPS and interferon-gamma up to 14 days after treatment. Macrophages BALB/c mice produced less NO than PM from B6 mice. The lower NO production was caused by higher production of TGF-beta by pulmonary macrophages of BALB/c and was abrogated by anti-TGF-beta MoAb in vitro and in vivo. Other interleukins such as IL-10, IL-4 and a combination of IL-1, TNF-alpha and IL-6 were not involved in NO production induced by Fraction F1. Expression of CD11b increases and expression of CD23 decreases on PM of BALB/c mice after in vivo treatment whereas PM of B6 mice do not show a variation of their phenotype. Moreover, the ability of pulmonary macrophages to induce lymphocyte proliferation was reduced in mixed cultures of CD11b(+) or CD23(+) macrophages but was restored when lymphocytes were cultivated in the presence of NO inhibitor (L-NMMA). Thus, the results presented herein indicate that in BALB/c but not in B6 mice TGF- is strongly induced by Fraction 1 in PM in vivo and suppresses NO production. Low NO production by PM is associated with a change in CD11b/CD23 expression and with a high lymphocyte proliferative response. Thus, CD11b(+)/CD23(+) PM modulate NO and TGF-beta production in the pulmonary microenvironment.
Resumo:
Rat airways exposure to Staphylococcal enterotoxin A (SEA) and B (SEB) induces marked neutrophil influx. Since sensory neuropeptides play important roles in cell infiltration, in this study we have investigated its contribution in triggering SEA- and SEB-induced pulmonary neutrophil infiltration. Male Wistar rats were exposed intratracheally with SEA (3 ng/trachea) or SEB (250 ng/trachea). Animals received different in vivo pretreatments, after which the neutrophil counts and levels of substance P and IL-1 in bronchoalveolar lavage fluid were evaluated. Alveolar macrophages and peritoneal mast cells were incubated with SEA and SEB to determine the IL-1 and TNF-alpha levels. Capsaicin pretreatment significantly reduced SEA- and SEB-induced neutrophil influx in bronchoalveolar lavage fluid, but this treatment was more effective to reduce SEA responses. Treatments with SR140333 (tachykinin NK(1) receptor antagonist) and SR48968 (tachykinin NK(2) receptor antagonist) decreased SEA-induced neutrophil influx, whereas SEB-induced responses were inhibited by SR140333 only. Cyproheptadine (histamine/5-hydroxytriptamine receptor antagonist) and MD 7222 (5-HT(3) receptor antagonist) reduced SEA- and SEB-induced neutrophil influx. The substance P and IL-1 levels in bronchoalveolar lavage fluid of SEA-exposed rats were significantly hi.-her than SEB. In addition, SEA (but not SEB) significantly released mast cell TNF-alpha. Increased production of TNF-alpha and IL-1 in alveolar macrophages was observed in response to SEA and SEB. In conclusion, sensory neuropeptides contribute significantly to SEA- and SEB-induced pulmonary neutrophil recruitment, but SEA requires in a higher extent the airways sensory innervation, and participation of mast cells and alveolar macrophage products. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Aims: There has been emerging interest in the prenatal determinants of respiratory disease. In utero factors have been reported to play a role in airway development, inflammation, and remodeling. Specifically, prenatal exposure to endotoxins might regulate tolerance to allergens later in life. The present study investigated whether prenatal lipopolysaccharide (LPS) administration alters subsequent offspring allergen-induced inflammatory response in adult rats. Main methods: Pregnant Wistar rats were treated with LPS (100 mu g/kg, i.p.) on gestation day 9.5 and their ovariectomized female offspring were sensitized and challenged with OVA later in adulthood. The bronchoalveolar lavage (BAL) fluid, peripheral blood, bone marrow leukocytes and passive cutaneous anaphylaxis were evaluated in these 75-day-old pups. Key findings: OVA sensitized pups of NaCl treated rats showed an increase of leucocytes in BAL after OVA challenge. This increase was attenuated, when mothers were exposed to a single LPS injection early in pregnancy. Thus, LPS prenatal treatment resulted in (1) lower increased total and differential (macrophages, neutrophils, eosinophils and lymphocytes) BAL cellularity count; (2) increased number of total, mononuclear and polymorphonuclear cells in the peripheral blood; and (3) no differences in bone marrow cellularity or passive cutaneous anaphylaxis. Significance: In conclusion, female pups treated prenatally with LPS presented an attenuated response to experimentally-induced asthma. We observed reduced immune cell migration from peripheral blood to the lungs, with no effect on the production of bone marrow cells or antibodies. It was suggested that inflammatory events such as exposure to LPS in early fetal life can attenuate allergic inflammation in the lung, which is a common symptom in asthma. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Magnetic nanoparticles surface-functionalized with meso-2,3-dimercaptosuccinic acid (MNPs-DMSA) constitute an innovative and promising approach for tissue- and cell-targeted delivery of therapeutic drugs in the lung. Transendothelial migration of leukocytes in the lung is a side effect of endovenous administration of MNPs-DMSA. Using cytologic and phenotypic analysis of murine bronchoalveolar lavage cells, we identified monocytes/macrophages as the main subpopulation of leukocytes involved in this process. Moreover, ultrastructural analysis revealed the presence of nanoparticles inside of numerous macrophages from bronchoalveolar lavage. MNPs-DMSA at concentrations as high as 1 X 10(15) nanoparticles/mL had no toxic effects on macrophages, as evidenced by 3-(4, 5-dimethylthiazolyi-2)-2,5-diphenyltetrazolium bromide (MTT) assay. Notably, MNPs-DMSA up-regulated the mRNA expression of E, L- and P-selectin and macrophage-1 antigen in the murine lung. Upregulation of these cell adhesion molecules was associated with an increased concentration of tumor necrosis factor-alpha in lung. Finally, the critical relevance of the beta(2) integrin-dependent pathway in leukocyte transmigration elicited by MNPs-DMSA was demonstrated by use of knockout mice. Our results characterize mechanisms of the pro-inflammatory effects of MNPs-DMSA in the lung, and identify beta(2) integrin-targeted interventions as promising strategies to reduce pulmonary side effects of MNPs-DMSA during biomedical applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Hydroquinone (HQ) is an environmental contaminant which causes immune toxicity. In this study, the effects of exposure to low doses of HQ on neutrophil mobilization into the LPS-inflamed lung were investigated. Male Swiss mice were exposed to aerosolized vehicle (control) or 12.5, 25 or 50 ppm HQ (1 h/day for 5 days). One hour later, oxidative burst, cell cycle. DNA fragmentation and adhesion molecules expressions in circulating neutrophils were determined by flow cytometry, and plasma malondialdehyde (MDA) levels were measured by HPLC. Also, 1 h later the last exposures, inflammation was induced by LPS inhalation (0.1 mg/ml/10 min) and 3 h later, the numbers of leukocytes in peripheral blood and in the bronchoalveolar lavage fluid (BALF) were determined using a Neubauer chamber and stained smears; adhesion molecules expressed on lung microvessel endothelial cells were quantified by immunohistochemistry; myeloperoxidase (MPO) activity was measured in the lung tissue by colorimetric assay; and cytokines in the BALF were determined by ELISA. In vivo HQ exposure augmented plasma MDA levels and oxidative activity of neutrophils, but did not cause alterations in cell cycle and DNA fragmentation. Under these conditions, the number of circulating leukocytes was not altered, but HQ exposure reduced LPS-induced neutrophil migration into the alveolar space, as these cells remained in the lung tissue. The impaired neutrophil migration into BALF may not be dependent on reduced cytokines secretions in the BALF and lung endothelial adhesion molecules expressions. However, HQ exposure increased the expression of beta(2) and beta(3) integrins and platelet-endothelial cell adhesion molecule-1 (PECAM-1) in neutrophils, which were not further enhanced by fMLP in vitro stimulation, indicating that HQ exposure activates circulating neutrophils, impairing further stimulatory responses. Therefore, it has been shown, for the first time, that neutrophils are target of lower levels of in vivo HQ exposure, which may be considered in host defense in infectious diseases. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The effects of single or repeated amphetamine (AMPH) treatment and those of AMPH withdrawals on immune-mediated lung inflammatory response were studied in rats. Two experiments were done. In the first, rats egg-albumin (OVA) sensitized were singularly or repeatedly (21 days, once daily) treated with AMPH (1.0 mg/kg) or with a similar number and volume of 0.9% NaCl. The OVA aerosol challenge was performed 12 h after the single or last repeated AMPH treatment and also 72 and 120 h after AMPH withdrawal. In the second experiment, the effects of reserpine (1.0 mg/kg/day for 5 consecutive days) on single AMPH actions on lung allergic response of rats were analyzed. Single and repeated AMPH treatment induced opposite actions on Bronchoalveolar lavage fluid (BAL) cellularity of allergic rats: single treatment decreased and repeated treatment increased the total number of cells as well as those of macrophages, neutrophils and eosinophils. Our data also showed that single but not repeated AMPH treatment decreased the number of neutrophils, monocytes and lymphocytes in the peripheral blood, and increased the total number of bone marrow cells in rats sensitized and challenged with OVA. Furthermore, it was shown that reserpine treatment precluded the effects of single AMPH treatment on cellular migration to the lung of OVA-sensitized and challenged rats. It was concluded that AMPH effects on lung inflammatory response and cell recruitment to the lung in allergic rats rely at least partially on corticosterone serum levels. The possible involvement of vesicular monoamine transporter type 2 (VMAT2) with these observed effects was discussed. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Ischemia and reperfusion injury (IRI) are mainly caused by leukocyte activation, endothelial dysfunction and production of reactive oxygen species. Moreover, IRI can lead to a systemic response affecting distant organs, such as the lungs. The objective was to study the pulmonary inflammatory systemic response after renal IRI. Male C57Bl/6 mice were subjected to 45 min of bilateral renal ischemia, followed by 4, 6, 12, 24 and 48 h of reperfusion. Blood was collected to measure serum creatinine and cytokine concentrations. Bronchoalveolar lavage fluid (BALF) was collected to determine the number of cells and PGE(2) concentration. Expressions of iNOS and COX-2 in lung were determined by Western blot. Gene analyses were quantified by real time PCR. Serum creatinine increased in the IRI group compared to sham mainly at 24 h after IRI (2.57 +/- A 0.16 vs. 0.43 +/- A 0.07, p < 0.01). The total number of cells in BAL fluid was higher in the IRI group in comparison with sham, 12 h (100 x 10(4) +/- A 15.63 vs. 18.1x10(4) +/- A 10.5, p < 0.05) 24 h (124 x 10(4) +/- A 8.94 vs. 23.2x10(4) +/- A 3.5, p < 0.05) and 48 h (79 x 10(4) +/- A 15.72 vs. 22.2 x 10(4) +/- A 4.2, p < 0.05), mainly by mononuclear cells and neutrophils. Pulmonary COX-2 and iNOS were up-regulated in the IRI group. TNF-alpha, IL-1 beta, MCP-1, KC and IL-6 mRNA expression were up-regulated in kidney and lungs 24 h after renal IRI. ICAM-1 mRNA was up-regulated in lungs 24 h after renal IRI. Serum TNF-alpha, IL-1 beta and MCP-1 and BALF PGE(2) concentrations were increased 24 h after renal IRI. Renal IRI induces an increase of cellular infiltration, up-regulation of COX-2, iNOS and ICAM-1, enhanced chemokine expression and a Th1 cytokine profile in lung demonstrating that the inflammatory response is indeed systemic, possibly leading to an amplification of renal injury.