224 resultados para Brain function
Resumo:
Background: Organs from the so-called marginal donors have been used with a significant higher risk of primary non function than organs retrieved from the optimal donors. We investigated the early metabolic changes and blood flow redistribution in splanchnic territory in an experimental model that mimics marginal brain-dead (BD) donor. Material/Methods: Ten dogs (21.3 +/- 0.9 kg), were subjected to a brain death protocol induced by subdural balloon inflation and observed for 30 min thereafter without ally additional interventions. Mean arterial and intracranial pressures, heart rate, cardiac output (CO), portal vein and hepatic artery blood flows (PVBF and HABF, ultrasonic flowprobe), and O(2)-derived variables were evaluated. Results: An increase in arterial pressure, CO, PVBF and HABF was observed after BD induction. At the end, an intense hypotension with normalization in CO (3.0 +/- 0.2 VS. 2.8 +/- 2.8 L/min) and PVBF (687 +/- 114 vs. 623 +/- 130 ml/min) was observed, whereas HABF (277 33 vs. 134 28 ml/min, p<0.005) remained lower than baseline values. Conclusions: Despite severe hypotension induced by sudden increase of intracranial pressure, the systemic and splanchnic blood flows were partially preserved without signs of severe hypoperfusion (i.e. hyperlactatemia). Additionally, the HABF was mostly negatively affected in this model of marginal BD donor. Our data suggest that not only the cardiac output, but the intrinsic hepatic microcirculatory mechanism plays a role in the hepatic blood flow control after BD.
Resumo:
Background. Hydroxyethylstarch (HES) is a synthetic polymer of glucose that has been suggested for therapeutic use in long-term plasma expansion. The aim of this study was to test the hypothesis that the infusion of a small volume of HES may provide benefits in systemic and regional hemodynamics and metabolism in a brain-dead canine model compared with large volume crystalloid resuscitation. Methods. Fourteen mongrel dogs were subjected to a brain-death protocol by consecutive insufflations of a balloon catheter in the epidural space. One hour after induction of brain-death, the animals were randomly assigned to two groups: NS (0.9% NaCl, 33mL/kg), and HES (6% HES 450/0.7, 17mL/Kg). Systemic and regional hemodynamics were evaluated using Swan-Ganz, ultrasonic flowprobes, and arterial catheters. Serial blood samples were collected for blood gas, electrolyte, and serum chemistry analysis. Systemic, hepatic, and splanchnic O(2)-derived variables were also calculated. Results. Epidural balloon insufflations induced a significant increase in mean arterial pressure, cardiac output (MAP and CO, respectively), regional blood flow, and systemic vascular resistance. Following the hyperdynamic phase, severe hypotension with normalization of systemic and regional blood flow was observed. Fluid resuscitation induced a prompt increase in MAP, CO, and portal vein blood flow, and a significant reduction in systemic and pulmonary vascular resistance. There were no differences between groups in metabolic indices, liver function tests (LFTs), or renal function tests. HES was more effective than NS in restoring cardiac performance in the first 2h after fluid resuscitation (P < 0.05). Both tested solutions partially and temporarily restored systemic and regional oxygen delivery. Conclusion. Small volumes of 6% HES 450/0.7 improved cardiovascular performance and provided the same regional hemodynamic and metabolic benefits of large volumes of isotonic crystalloid solutions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The Eag1 and Eag2, voltage-dependent potassium channels, and the small-conductance calcium-activated potassium channel (Kcnn3) are highly expressed in limbic regions of the brain, where their function is still unknown. Eag1 co-localizes with tyrosine hydroxilase enzyme in the substantia nigra and ventral tegmental area. Kcnn3 deficiency leads to enhanced serotonergic and dopaminergic neurotransmission accompanied by distinct alterations in emotional behaviors. As exposure to stress is able to change the expression and function of several ion channels, suggesting that they might be involved in the consequences of stress, we aimed at investigating Eag 1, Eag2 and Kcnn3 mRNA expression in the brains of rats submitted to isolation rearing. As the long-lasting alterations in emotional and behavioral regulation after stress have been related to changes in serotonergic neurotransmission, expressions of serotonin Htr1a and Htr2a receptors in male Wistar rats` brain were also investigated. Rats were reared in isolation or in groups of five for nine weeks after weaning. Isolated and socially reared rats were tested for exploratory activity in the open field test for 5 min and brains were processed for reverse-transcription coupled to quantitative polymerase chain reaction (qRT-PCR). Isolated reared rats showed decreased exploratory activity in the open field. Compared to socially reared rats, isolated rats showed reduced Htr2a mRNA expression in the striatum and brainstem and reduced Eag2 mRNA expression in all examined regions except cerebellum. To our knowledge, this is the first work to show that isolation rearing can change Eag2 gene expression in the brain. The involvement of this channel in stress-related behaviors is discussed.
Resumo:
Purkinje cell degeneration (pcd) mice have a mutation within the gene encoding cytosolic carboxypeptidase 1 (CCP1/Nna1), which has homology to metallocarboxypeptidases. To assess the function of CCP1/Nna1, quantitative proteomics and peptidomics approaches were used to compare proteins and peptides in mutant and wild-type mice. Hundreds of peptides derived from cytosolic and mitochondrial proteins are greatly elevated in pcd mouse hypothalamus, amygdala, cortex, prefrontal cortex, and striatum. However, the major proteins detected on 2-D gel electrophoresis were present in mutant and wild-type mouse cortex and hypothalamus at comparable levels, and proteasome activity is normal in these brain regions of pcd mice, suggesting that the increase in cellular peptide levels in the pcd mice is due to reduced degradation of the peptides downstream of the proteasome. Both nondegenerating and degenerating regions of pcd mouse brain, but not wild-type mouse brain, show elevated autophagy, which can be triggered by a decrease in amino acid levels. Taken together with previous studies on CCP1/Nna1, these data suggest that CCP1/Nna1 plays a role in protein turnover by cleaving proteasome-generated peptides into amino acids and that decreased peptide turnover in the pcd mice leads to cell death.-Berezniuk, I., Sironi, J., Callaway, M. B., Castro, L. M., Hirata, I. Y., Ferro, E. S., Fricker, L. D. CCP1/Nna1 functions in protein turnover in mouse brain: Implications for cell death in Purkinje cell degeneration mice. FASEB J. 24, 1813-1823 (2010). www.fasebj.org
Resumo:
In the present study, we propose a theoretical graph procedure to investigate multiple pathways in brain functional networks. By taking into account all the possible paths consisting of h links between the nodes pairs of the network, we measured the global network redundancy R (h) as the number of parallel paths and the global network permeability P (h) as the probability to get connected. We used this procedure to investigate the structural and dynamical changes in the cortical networks estimated from a dataset of high-resolution EEG signals in a group of spinal cord injured (SCI) patients during the attempt of foot movement. In the light of a statistical contrast with a healthy population, the permeability index P (h) of the SCI networks increased significantly (P < 0.01) in the Theta frequency band (3-6 Hz) for distances h ranging from 2 to 4. On the contrary, no significant differences were found between the two populations for the redundancy index R (h) . The most significant changes in the brain functional network of SCI patients occurred mainly in the lower spectral contents. These changes were related to an improved propagation of communication between the closest cortical areas rather than to a different level of redundancy. This evidence strengthens the hypothesis of the need for a higher functional interaction among the closest ROIs as a mechanism to compensate the lack of feedback from the peripheral nerves to the sensomotor areas.
Resumo:
The aim of this study was to evaluate the relationship between malocclusion and self-perception of oral appearance/function, in 12/15-year-old Brazilian adolescents. The cluster sample consisted of 717 teenagers attending 24 urban public (n=611) and 5 rural public (n=107) schools in Maringá/PR. Malocclusion was measured using the Dental Aesthetic Index (DAI), in accordance with WHO recommendations. A parental questionnaire was applied to collect information on esthetic perception level and oral variables related to oral health. Univariate and multiple logistic regression analyses were performed. Multiple logistic regression confirmed that for 12-year-old, missing teeth (OR=2.865) and presence of openbite (open occlusal relationship) (OR=2.865) were risk indicators for speech capability. With regard to 15-year-old, presence of mandibular overjet (horizontal overlap) (OR=4.016) was a risk indicator for speech capability and molar relationship (OR=1.661) was a risk indicator for chewing capability. The impact of malocclusion on adolescents' life was confirmed in this study. Speech and chewing capability were associated with orthodontic deviations, which should be taken into consideration in oral health planning, to identify risk groups and improve community health services.
Resumo:
During development, children become capable of categorically associating stimuli and of using these relationships for memory recall. Brain damage in childhood can interfere with this development. This study investigated categorical association of stimuli and recall in four children with brain damages. The etiology, topography and timing of the lesions were diverse. Tasks included naming and immediate recall of 30 perceptually and semantically related figures, free sorting, delayed recall, and cued recall of the same material. Traditional neuropsychological tests were also employed. Two children with brain damage sustained in middle childhood relied on perceptual rather than on categorical associations in making associations between figures and showed deficits in delayed or cued recall, in contrast to those with perinatal lesions. One child exhibited normal performance in recall despite categorical association deficits. The present results suggest that brain damaged children show deficits in categorization and recall that are not usually identified in traditional neuropsychological tests.
Resumo:
O desenvolvimento do sistema nervoso é bastante complexo, existindo poucos estudos sobre a organização dos envoltórios cerebrais relacionados ao crescimento encefálico. Utilizando como modelo experimental o rato, analisaram-se os diferentes aspectos estruturais e morfométricos da paquimeninge e leptomeninge durante o processo de envelhecimento. Foram utilizados quatro grupos de ratos em diferentes faixas etárias e analisadas as meninges em microscopias de luz e eletrônica. Verificamos que o grupo de ratos adultos apresentou uma maior área de fibras colágenas tanto do tipo I e quanto do tipo III, em relação aos outros grupos. Encontramos também que as fibras colágenas do tipo III em todos os grupos analisados ocupam uma maior área quando comparados com as fibras do tipo I. Os resultados revelam que a coloração de Weigert Oxona, que mostra fibras elásticas, elaunínicas e oxitalânicas, apresentou uma diferença estatisticamente maior de fibras quando comparados com as colorações de Weigert e Verhoeff, que mostra fíbras elaunínicas e elásticas, respectivamente. Os resultados ultra-estruturais demonstraram a presença de muitos fibroblastos e mitocôndrias tanto na paquimeninge como nas leptomeninges dos grupos de ratos neonatos e adultos, indicativo de alta atividade celular e conseqüentemente, intensa formação de tecido conjuntivo. Como as fibras colágenas do tipo III atuam na manutenção da estrutura de tecidos delicados e expansíveis, o estudo mostra que as funções das meninges encefálicas não estão relacionadas apenas com a resistência a trações e tensões a que estão sujeitas o encéfalo. Mas também a função relacionada com a distensibilidade dos vasos meníngeos e cerebrais de acordo com a necessidade do aporte sanguíneo em diversas funções específicas regionais do tecido nervoso.
Resumo:
Malignant brain tumor experimental models tend to employ cells that are immunologically compatible with the receptor animal. In this study, we have proposed an experimental model of encephalic tumor development by injecting C6 cells into athymic Rowett rats, aiming at reaching a model which more closely resembles to the human glioma tumor. In our model, we observed micro-infiltration of tumor cell clusters in the vicinity of the main tumor mass, and of more distal isolated tumor cells immersed in normal encephalic parenchyma. This degree of infiltration is superior to that usually observed in other C6 models.
Resumo:
Chelonia mydas is a sea turtle that feeds and nests on the Brazilian coast and a disease called fibropapillomatosis is a threat to this species. Because of this, it is extremely necessary to determine a methodology that would enable the analysis of blood leukocyte function in these sea turtles. In order to achieve this aim, blood samples were collected from C. mydas with or without fibropapillomas captured on the São Paulo north coast. Blood samples were placed in tubes containing sodium heparin and were transported under refrigeration to the laboratory in sterile RPMI 1640 cell culture medium. Leukocytes were separated by density gradient using Ficoll-PaqueTM Plus, Amershan Biociences®. The following stimuli were applied in the assessment of leukocyte function: Phorbol Miristate-Acetate (PMA) for oxidative burst activity evaluation and Zymosan A (Saccharomyces cerevisiae) Bio Particles®, Alexa Fluor® 594 conjugate for phagocytosis evaluation. Three cell populations were identified: heterophils, monocytes and lymphocytes. Monocytes were the cells responsible for phagocytosis and oxidative burst.
Resumo:
The aim of this study was to investigate the possible effects of reproductive experience on dopaminergic profile in three different brain tissues, hypothalamus, striatum and cortex in rats on 7th-8th day of pregnancy during the light-dark shift (between 1700-1900h). Results showed that in hypothalamus, dopamine levels increased and DOPAC/DA decreased as a function of parity. In cortex, no differences were observed. In striata, the haloperidol-induced HVA and HVA/DA increases were less intense in experienced animals. These findings suggested that reproductive experience produced functional central changes during pregnancy, with different neurochemical responses depending on the brain region.
Resumo:
Background: Toll-like receptor 4 (TLR4) is widely recognized as an essential element in the triggering of innate immunity, binding pathogen-associated molecules such as Lipopolysaccharide (LPS), and in initiating a cascade of pro-inflammatory events. Evidence for TLR4 expression in non-immune cells, including pancreatic beta-cells, has been shown, but, the functional role of TLR4 in the physiology of human pancreatic beta-cells is still to be clearly established. We investigated whether TLR4 is present in beta-cells purified from freshly isolated human islets and confirmed the results using MIN6 mouse insulinoma cells, by analyzing the effects of TLR4 expression on cell viability and insulin homeostasis. Results: CD11b positive macrophages were practically absent from isolated human islets obtained from nondiabetic brain-dead donors, and TLR4 mRNA and cell surface expression were restricted to beta-cells. A significant loss of cell viability was observed in these beta-cells indicating a possible relationship with TLR4 expression. Monitoring gene expression in beta-cells exposed for 48h to the prototypical TLR4 ligand LPS showed a concentration-dependent increase in TLR4 and CD14 transcripts and decreased insulin content and secretion. TLR4-positive MIN6 cells were also LPS-responsive, increasing TLR4 and CD14 mRNA levels and decreasing cell viability and insulin content. Conclusions: Taken together, our data indicate a novel function for TLR4 as a molecule capable of altering homeostasis of pancreatic beta-cells.
Resumo:
Context: Patellofemoral pain syndrome (PFPS) is a common knee condition in athletes. Recently, researchers have indicated that factors proximal to the knee, including hip muscle weakness and motor control impairment, contribute to the development of PFPS. However, no investigators have evaluated eccentric hip muscle function in people with PFPS. Objective: To compare the eccentric hip muscle function between females with PFPS and a female control group. Design: Cross-sectional study. Setting: Musculoskeletal laboratory. Patients or Other Participants: Two groups of females were studied: a group with PFPS (n = 10) and a group with no history of lower extremity injury or surgery (n = 10). Intervention(s): Eccentric torque of the hip musculature was evaluated on an isokinetic dynamometer. Main Outcome Measure(s): Eccentric hip abduction, adduction, and external and internal rotation peak torque were measured and expressed as a percentage of body mass (Nm/kg x 100). We also evaluated eccentric hip adduction to abduction and internal to external rotation torque ratios. The peak torque value of 5 maximal eccentric contractions was used for calculation. Two-tailed, independent-samples t tests were used to compare torque results between groups. Results: Participants with PFPS exhibited much lower eccentric hip abduction (t(18) = -2.917, P = .008) and adduction (t(18) = -2.764, P =.009) peak torque values than did their healthy counterparts. No differences in eccentric hip external (t(18) = 0.45, P = .96) or internal (t(18) = -0.742, P =.47) rotation peak torque values were detected between the groups. The eccentric hip adduction to abduction torque ratio was much higher in the PFPS group than in the control group (t(18) = 2.113, P = .04), but we found no difference in the eccentric hip internal to external rotation torque ratios between the 2 groups (t(18) = -0.932, P = .36). Conclusions: Participants with PFPS demonstrated lower eccentric hip abduction and adduction peak torque and higher eccentric adduction to abduction torque ratios when compared with control participants. Thus, clinicians should consider eccentric hip abduction strengthening exercises when developing rehabilitation programs for females with PFPS.
Resumo:
Macro- and microarrays are well-established technologies to determine gene functions through repeated measurements of transcript abundance. We constructed a chicken skeletal muscle-associated array based on a muscle-specific EST database, which was used to generate a tissue expression dataset of similar to 4500 chicken genes across 5 adult tissues (skeletal muscle, heart, liver, brain, and skin). Only a small number of ESTs were sufficiently well characterized by BLAST searches to determine their probable cellular functions. Evidence of a particular tissue-characteristic expression can be considered an indication that the transcript is likely to be functionally significant. The skeletal muscle macroarray platform was first used to search for evidence of tissue-specific expression, focusing on the biological function of genes/transcripts, since gene expression profiles generated across tissues were found to be reliable and consistent. Hierarchical clustering analysis revealed consistent clustering among genes assigned to 'developmental growth', such as the ontology genes and germ layers. Accuracy of the expression data was supported by comparing information from known transcripts and tissue from which the transcript was derived with macroarray data. Hybridization assays resulted in consistent tissue expression profile, which will be useful to dissect tissue-regulatory networks and to predict functions of novel genes identified after extensive sequencing of the genomes of model organisms. Screening our skeletal-muscle platform using 5 chicken adult tissues allowed us identifying 43 'tissue-specific' transcripts, and 112 co-expressed uncharacterized transcripts with 62 putative motifs. This platform also represents an important tool for functional investigation of novel genes; to determine expression pattern according to developmental stages; to evaluate differences in muscular growth potential between chicken lines, and to identify tissue-specific genes.
Resumo:
Background: Hexamerins are hemocyanin-derived proteins that have lost the ability to bind copper ions and transport oxygen; instead, they became storage proteins. The current study aimed to broaden our knowledge on the hexamerin genes found in the honey bee genome by exploring their structural characteristics, expression profiles, evolution, and functions in the life cycle of workers, drones and queens. Results: The hexamerin genes of the honey bee (hex 70a, hex 70b, hex 70c and hex 110) diverge considerably in structure, so that the overall amino acid identity shared among their deduced protein subunits varies from 30 to 42%. Bioinformatics search for motifs in the respective upstream control regions (UCRs) revealed six overrepresented motifs including a potential binding site for Ultraspiracle (Usp), a target of juvenile hormone (JH). The expression of these genes was induced by topical application of JH on worker larvae. The four genes are highly transcribed by the larval fat body, although with significant differences in transcript levels, but only hex 110 and hex 70a are re-induced in the adult fat body in a caste-and sex-specific fashion, workers showing the highest expression. Transcripts for hex 110, hex 70a and hex70b were detected in developing ovaries and testes, and hex 110 was highly transcribed in the ovaries of egg-laying queens. A phylogenetic analysis revealed that HEX 110 is located at the most basal position among the holometabola hexamerins, and like HEX 70a and HEX 70c, it shares potential orthology relationship with hexamerins from other hymenopteran species. Conclusions: Striking differences were found in the structure and developmental expression of the four hexamerin genes in the honey bee. The presence of a potential binding site for Usp in the respective 5' UCRs, and the results of experiments on JH level manipulation in vivo support the hypothesis of regulation by JH. Transcript levels and patterns in the fat body and gonads suggest that, in addition to their primary role in supplying amino acids for metamorphosis, hexamerins serve as storage proteins for gonad development, egg production, and to support foraging activity. A phylogenetic analysis including the four deduced hexamerins and related proteins revealed a complex pattern of evolution, with independent radiation in insect orders.