40 resultados para Boundary value problems on manifolds
Resumo:
This work studies the operation of source-follower buffers implemented with standard and graded-channel (GC) fully depleted (FD) SCI nMOSFETs at low temperatures. The analysis is performed by comparing the voltage gain of buffers implemented with GC and standard SOI nMOS transistors considering devices with the same mask channel length and same effective channel length. It is shown that the use of GC devices allows for achieving improved gain in all inversion levels in a wide range of temperatures. In addition, this improvement increases as temperature is reduced. It is shown that GC transistors can provide virtually constant gain, while for standard devices, the gain departs from the maximum value depending on the temperature and inversion level imposed by the bias current and input voltage. Two-dimensional numerical simulations were performed in order to study the reasons for the enhanced gain of GC MOSFETs at low temperatures. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this work the performance of graded-channel (CC) SOI MOSFETs operating as source-follower buffers is presented. The experimental analysis is performed by comparing the gain and linearity of buffers implemented with CC and standard SOI MOS devices considering the same mask dimensions. It is shown that by using CC devices, buffer gain very close to the theoretical limit can be achieved, with improved linearity, while for standard devices the gain departs from the theoretical value depending on the inversion level imposed by the bias current and input voltage. Two-dimensional numerical simulations were performed in order to confirm some hypotheses proposed to explain the gain behavior observed in the experimental data. By using numerical simulations the channel length has been varied, showing that the gain of buffers implemented with CC devices remains close to the theoretical limit even when short-channel devices are adopted. It has also been shown that the length of a source-follower buffer using CC devices can be reduced by a factor of 5, in comparison with a standard Sol MOSFET, without gain loss or linearity degradation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The paper considers the existence and uniqueness of almost automorphic mild solutions to some classes of first-order partial neutral functional-differential equations. Sufficient conditions for the existence and uniqueness of almost automorphic mild solutions to the above-mentioned equations are obtained. As an application, a first-order boundary value problem arising in control systems is considered. (C) 2007 Elsevier Ltd. All fights reserved.
Resumo:
In this study, a PCR multiplex was optimized, allowing the simultaneous analysis of 13 X-chromosome Insertion/deletion polymorphisms (INDELs). Genetic variation observed in Africans, Europeans, and Native Americans reveals high inter-population variability. The estimated proportions of X-chromosomes in an admixed population from the Brazilian Amazon region show a predominant Amerindian contribution (congruent to 41%), followed by European (congruent to 32%) and African (congruent to 27%) contributions. The proportion of Amerindian contribution based on X-linked data is similar to the expected value based on mtDNA and Y-chromosome information. The accuracy for assessing interethnic admixture, and the high differentiation between African, European, and Native American populations, demonstrates the suitability of this INDEL set to measure ancestry proportions in three-hybrid populations, as it is the case of Latin American populations. Am. J. Hum. Biol. 21:707-709, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
In this paper we give a proof of the existence of an orthogonal geodesic chord on a Riemannian manifold homeomorphic to a closed disk and with concave boundary. This kind of study is motivated by the link (proved in Giambo et al. (2005) [8]) of the multiplicity problem with the famous Seifert conjecture (formulated in Seifert (1948) [1]) about multiple brake orbits for a class of Hamiltonian systems at a fixed energy level. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, a new boundary element formulation for the analysis of plate-beam interaction is presented. This formulation uses a three nodal value boundary elements and each beam element is replaced by its actions on the plate, i.e., a distributed load and end of element forces. From the solution of the differential equation of a beam with linearly distributed load the plate-beam interaction tractions can be written as a function of the nodal values of the beam. With this transformation a final system of equation in the nodal values of displacements of plate boundary and beam nodes is obtained and from it, all unknowns of the plate-beam system are obtained. Many examples are analyzed and the results show an excellent agreement with those from the analytical solution and other numerical methods. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we study the behavior of the solutions of nonlinear parabolic problems posed in a domain that degenerates into a line segment (thin domain) which has an oscillating boundary. We combine methods from linear homogenization theory for reticulated structures and from the theory on nonlinear dynamics of dissipative systems to obtain the limit problem for the elliptic and parabolic problems and analyze the convergence properties of the solutions and attractors of the evolutionary equations. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The ever-increasing robustness and reliability of flow-simulation methods have consolidated CFD as a major tool in virtually all branches of fluid mechanics. Traditionally, those methods have played a crucial role in the analysis of flow physics. In more recent years, though, the subject has broadened considerably, with the development of optimization and inverse design applications. Since then, the search for efficient ways to evaluate flow-sensitivity gradients has received the attention of numerous researchers. In this scenario, the adjoint method has emerged as, quite possibly, the most powerful tool for the job, which heightens the need for a clear understanding of its conceptual basis. Yet, some of its underlying aspects are still subject to debate in the literature, despite all the research that has been carried out on the method. Such is the case with the adjoint boundary and internal conditions, in particular. The present work aims to shed more light on that topic, with emphasis on the need for an internal shock condition. By following the path of previous authors, the quasi-1D Euler problem is used as a vehicle to explore those concepts. The results clearly indicate that the behavior of the adjoint solution through a shock wave ultimately depends upon the nature of the objective functional.
Resumo:
The goal of this paper is to analyze the character of the first Hopf bifurcation (subcritical versus supercritical) that appears in a one-dimensional reaction-diffusion equation with nonlinear boundary conditions of logistic type with delay. We showed in the previous work [Arrieta et al., 2010] that if the delay is small, the unique non-negative equilibrium solution is asymptotically stable. We also showed that, as the delay increases and crosses certain critical value, this equilibrium becomes unstable and undergoes a Hopf bifurcation. This bifurcation is the first one of a cascade occurring as the delay goes to infinity. The structure of this cascade will depend on the parameters appearing in the equation. In this paper, we show that the first bifurcation that occurs is supercritical, that is, when the parameter is bigger than the delay bifurcation value, stable periodic orbits branch off from the constant equilibrium.
Resumo:
We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Let (M, g) be a complete Riemannian Manifold, Omega subset of M an open subset whose closure is diffeomorphic to an annulus. If partial derivative Omega is smooth and it satisfies a strong concavity assumption, then it is possible to prove that there are at least two geometrically distinct geodesics in (Omega) over bar = Omega boolean OR partial derivative Omega starting orthogonally to one connected component of partial derivative Omega and arriving orthogonally onto the other one. The results given in [6] allow to obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two distinct brake orbits for a. class of Hamiltonian systems. Under a further symmetry assumption, it is possible to show the existence of at least dim(M) pairs of geometrically distinct geodesics as above, brake orbits and homoclinics.
Resumo:
This work presents a non-linear boundary element formulation applied to analysis of contact problems. The boundary element method (BEM) is known as a robust and accurate numerical technique to handle this type of problem, because the contact among the solids occurs along their boundaries. The proposed non-linear formulation is based on the use of singular or hyper-singular integral equations by BEM, for multi-region contact. When the contact occurs between crack surfaces, the formulation adopted is the dual version of BEM, in which singular and hyper-singular integral equations are defined along the opposite sides of the contact boundaries. The structural non-linear behaviour on the contact is considered using Coulomb`s friction law. The non-linear formulation is based on the tangent operator in which one uses the derivate of the set of algebraic equations to construct the corrections for the non-linear process. This implicit formulation has shown accurate as the classical approach, however, it is faster to compute the solution. Examples of simple and multi-region contact problems are shown to illustrate the applicability of the proposed scheme. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the Askey-Wiener scheme and the Galerkin method are used to obtain approximate solutions to stochastic beam bending on Winkler foundation. The study addresses Euler-Bernoulli beams with uncertainty in the bending stiffness modulus and in the stiffness of the foundation. Uncertainties are represented by parameterized stochastic processes. The random behavior of beam response is modeled using the Askey-Wiener scheme. One contribution of the paper is a sketch of proof of existence and uniqueness of the solution to problems involving fourth order operators applied to random fields. From the approximate Galerkin solution, expected value and variance of beam displacement responses are derived, and compared with corresponding estimates obtained via Monte Carlo simulation. Results show very fast convergence and excellent accuracies in comparison to Monte Carlo simulation. The Askey-Wiener Galerkin scheme presented herein is shown to be a theoretically solid and numerically efficient method for the solution of stochastic problems in engineering.
Resumo:
In this paper a new boundary element method formulation for elastoplastic analysis of plates with geometrical nonlinearities is presented. The von Mises criterion with linear isotropic hardening is considered to evaluate the plastic zone. Large deflections are assumed but within the context of small strain. To derive the boundary integral equations the von Karman`s hypothesis is taken into account. An initial stress field is applied to correct the true stresses according to the adopted criterion. Isoparametric linear elements are used to approximate the boundary unknown values while triangular internal cells with linear shape function are adopted to evaluate the domain value influences. The nonlinear system of equations is solved by using an implicit scheme together with the consistent tangent operator derived along the paper. Numerical examples are presented to demonstrate the accuracy and the validity of the proposed formulation.
Resumo:
This work deals with analysis of cracked structures using BEM. Two formulations to analyse the crack growth process in quasi-brittle materials are discussed. They are based on the dual formulation of BEM where two different integral equations are employed along the opposite sides of the crack surface. The first presented formulation uses the concept of constant operator, in which the corrections of the nonlinear process are made only by applying appropriate tractions along the crack surfaces. The second presented BEM formulation to analyse crack growth problems is an implicit technique based on the use of a consistent tangent operator. This formulation is accurate, stable and always requires much less iterations to reach the equilibrium within a given load increment in comparison with the classical approach. Comparison examples of classical problem of crack growth are shown to illustrate the performance of the two formulations. (C) 2009 Elsevier Ltd. All rights reserved.