18 resultados para Block infraorbital nerve
Resumo:
Adenosine Is known to modulate neuronal activity within the nucleus tractus solitarius (NTS). The modulatory effect of adenosine A, receptors (A(1R)) on alpha(2)-adrenoceptors (Adr(2R)) was evaluated using quantitative radioautography within NTS subnuclei and using neuronal culture of normotensive (WKY) and spontaneously hypertensive rats (SHR). Radioautography was used in a saturation experiment to measure Adr2R binding parameters (B(max), K(d)) In the presence of 3 different concentrations of N(6)-cyclopentyladenosine (CPA), an A(1R) agonist. Neuronal culture confirmed our radioautographic results. [(3)H]RX821002, an Adr(2R) antagonist, was used as a ligand for both approaches. The dorsomedial/dorsolateral subnucleus of WKY showed an increase in B(max) values (21%) Induced by 10 nmol/L of CPA. However, the subpostremal subnucleus showed a decrease in Kd values (24%) induced by 10 nmol/L of CPA. SHR showed the same pattern of changes as WKY within the same subnuclei; however, the modulatory effect of CPA was induced by I nmol/L (increased B(max), 17%; decreased K(d), 26%). Cell culture confirmed these results, because 10(-5) and 10(-7) mol/L of CPA promoted an Increase in [3H]RX821002 binding of WKY (53%) and SHR cells (48%), respectively. DPCPX, an AIR antagonist, was used to block the modulatory effect promoted by CPA with respect to Adr2R binding. In conclusion, our study shows for the first time an interaction between A(1R) that increases the binding of Adr2R within specific subnuclei of the NTS. This may be important In understanding the complex autonomic response induced by adenosine within the NTS. In addition, changes in interactions between receptors might be relevant to understanding the development of hypertension. (Hypertens Res 2008; 31: 2177-2186)
Resumo:
A novel Schiff base-copper(II) complex [Cu(2)L(2)(N(3))(2)](ClO(4))(2) 1, where L = (4-imidazolyl)ethylene-2-amino-1-ethylpyridine (apyhist), containing azide-bridges between adjacent copper ions in a dinuclear arrangement was isolated and characterized both in the solid state and in solution by X-ray crystallography and different spectroscopic techniques. Azide binding constants were estimated from titrations of the precursor [CuL(H(2)O)(2)](2+) solutions with sodium azide, giving rise to the azido-bridged species, [Cu(2)L(2)(N(3))(2)](2+). Raman spectra showed asymmetric stretching band at 2060 cm(-1), indicating the presence of azido ligands with a symmetric mu(1,) (1) binding geometry. EPA spectra, in frozen methanol/water solutions at 77 K, exhibited characteristic features of copper centers in tetragonal pyramidal coordination geometry, exhibiting magnetic interactions between them. Further, in solid state, two different values for magnetic coupling in this species were obtained, J/k = -(5.14 +/- 0.02) cm(-1) attributed to the mu(1, 1) azide-bridge mode, and J`z`/k = -(2.94 +/- 0.11) cm(-1) for the interaction between dinuclear moieties via water/perchorate bridges. Finally, an attempt was made to correlate structure and magnetic data for this dinuclear asymmetric end-on azido bridged-copper(II) 1 complex with those of another correlated dinuclear system, complex [Cu(2)L(2)Cl(2)](ClO(4))(2) 2, containing the same tridentate diimine ligand, but with chloro-bridged groups between the copper centres.
Resumo:
A new aliphatic block copolyester was synthesized in bulk from transesterification techniques between poly((R)-3-hydroxybutyrate) (PHB) and poly(isosorbide succinate) (PIS). Additionally, other two block copolyesters were synthesized in bulk either from transesterification reactions involving PHB and poly(l-lactide) (PLLA) or from ring-opening copolymerization of l-lactide and hydroxyl-terminated PHB, as result of a previous transesterification reactions with isosorbide. Two-component blends of PHB and PIS or PLLA were also prepared as comparative systems. SEC, MALDI-TOF mass spectrometry (MALDI-TOFMS), (1)H and (13)C NMR spectroscopy, WAXD, solubility tests, and TG thermal analysis were used for characterization. The block copolymer structures of the products were evidenced by MALDI-TOFMS, (13)C NMR, and WAXD data. The block copolymers and the corresponding binary blends presented different solubility properties, as revealed by solubility tests. Although the incorporation of PIS sequences into PHB main backbone did not enhance the thermal stability of the product, it reduced its crystallinity, which could be advantageous for faster biodegradation rate. These products, composed of PHB and PIS or PLLA sequences, are an interesting alternative in biomedical applications.