50 resultados para Biogeochemistry of Tidal Flats


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtained new Fabry-Perot data cubes and derived velocity fields, monochromatic, and velocity dispersion maps for 28 galaxies in the Hickson compact groups 37, 40, 47, 49, 54, 56, 68, 79, and 93. We also derived rotation curves for 9 of the studied galaxies, 6 of which are strongly asymmetric. Combining these new data with previously published 2D kinematic maps of compact group galaxies, we investigated the differences between the kinematic and morphological position angles for a sample of 46 galaxies. We find that one third of the unbarred compact group galaxies have position angle misalignments between the stellar and gaseous components. This and the asymmetric rotation curves are clear signatures of kinematic perturbations, probably because of interactions among compact group galaxies. A comparison between the B-band Tully-Fisher relation for compact group galaxies and for the GHASP field-galaxy sample shows that, despite the high fraction of compact group galaxies with asymmetric rotation curves, these lay on the TF relation defined by galaxies in less dense environments, although with more scatter. This agrees with previous results, but now confirmed for a larger sample of 41 galaxies. We confirm the tendency for compact group galaxies at the low-mass end of the Tully-Fisher relation (HCG 49b, 89d, 96c, 96d, and 100c) to have either a magnitude that is too bright for its mass (suggesting brightening by star formation) and/or a low maximum rotational velocity for its luminosity (suggesting tidal stripping). These galaxies are outside the Tully Fisher relation at the 1 sigma level, even when the minimum acceptable values of inclinations are used to compute their maximum velocities. Including such galaxies with nu < 100 km s(-1) in the determination of the zero point and slope of the compact group B-band Tully-Fisher relation would strongly change the fit, making it different from the relation for field galaxies, which has to be kept in mind when studying scaling relations of interacting galaxies, especially at high redshifts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Compact groups of galaxies are entities that have high densities of galaxies and serve as laboratories to study galaxy interactions, intergalactic star formation and galaxy evolution. Aims. The main goal of this study is to search for young objects in the intragroup medium of seven compact groups of galaxies: HCG 2, 7, 22, 23, 92, 100 and NGC 92 as well as to evaluate the stage of interaction of each group. Methods. We used Fabry-Perot velocity fields and rotation curves together with GALEX NUV and FUV images and optical R-band and HI maps. Results. (i) HCG 7 and HCG 23 are in early stages of interaction; (ii) HCG 2 and HCG 22 are mildly interacting; and (iii) HCG 92, HCG 100 and NGC 92 are in late stages of evolution. We find that all three evolved groups contain populations of young blue objects in the intragroup medium, consistent with ages < 100 Myr, of which several are younger than < 10 Myr. We also report the discovery of a tidal dwarf galaxy candidate in the tail of NGC 92. These three groups, besides containing galaxies that have peculiar velocity fields, also show extended HI tails. Conclusions. Our results indicate that the advanced stage of evolution of a group, together with the presence of intragroup HI clouds, may lead to star formation in the intragroup medium. A table containing all intergalactic HII regions and tidal dwarf galaxies confirmed to date is appended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supply of competent larvae to the benthic habitat is a major determinant of population dynamics in coastal and estuarine invertebrates with an indirect life cycle. Larval delivery may depend not only on physical transport mechanisms, but also on larval behavior and physiological progress to the competent stage. Yet, the combined analysis of such factors has seldom been attempted. We used time-series analyses to examine tide- and wind-driven mechanisms responsible for the supply of crab megalopae to an estuarine river under a major marine influence in SW Spain, and monitored the vertical distribution of upstream moving megalopae, their net flux and competent state. The species Panopeus africanus (estuarine), Brachynotus sexdentatus (euryhaline) and Nepinnotheres pinnotheres (coastal) comprised 80% of the whole sample, and responded in a similar way to tide and wind forcing. Tidal range was positively correlated to supply, with maxima 0 to 1 d after spring tides, suggesting selective tidal stream transport. Despite being extensively subjected to upwelling, downwind drift under the effect of westerlies, not Ekman transport, explained residual supply variation at our sampling area. Once in the estuary, net flux and competence state matched the expected trends. Net upstream flux increased from B. sexdentatus to P. africanus, favoring transport to a sheltered coastal habitat (N. pinnotheres), or to the upper estuary (P. africanus). Competence state was highest in N. pinnotheres, intermediate in B. sexdentatus and lowest in P. africanus, as expected if larvae respond to cues from adequate benthic habitat. P. africanus megalopae were found close to the bottom, not above, rendering slower upstream transport than anticipated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical ecosystems play a large and complex role in the global carbon cycle. Clearing of natural ecosystems for agriculture leads to large pulses of CO(2) to the atmosphere from terrestrial biomass. Concurrently, the remaining intact ecosystems, especially tropical forests, may be sequestering a large amount of carbon from the atmosphere in response to global environmental changes including climate changes and an increase in atmospheric CO(2). Here we use an approach that integrates census-based historical land use reconstructions, remote-sensing-based contemporary land use change analyses, and simulation modeling of terrestrial biogeochemistry to estimate the net carbon balance over the period 1901-2006 for the state of Mato Grosso, Brazil, which is one of the most rapidly changing agricultural frontiers in the world. By the end of this period, we estimate that of the state`s 925 225 km(2), 221 092 km(2) have been converted to pastures and 89 533 km(2) have been converted to croplands, with forest-to-pasture conversions being the dominant land use trajectory but with recent transitions to croplands increasing rapidly in the last decade. These conversions have led to a cumulative release of 4.8 Pg C to the atmosphere, with similar to 80% from forest clearing and 20% from the clearing of cerrado. Over the same period, we estimate that the residual undisturbed ecosystems accumulated 0.3 Pg C in response to CO2 fertilization. Therefore, the net emissions of carbon from Mato Grosso over this period were 4.5 Pg C. Net carbon emissions from Mato Grosso since 2000 averaged 146 Tg C/yr, on the order of Brazil`s fossil fuel emissions during this period. These emissions were associated with the expansion of croplands to grow soybeans. While alternative management regimes in croplands, including tillage, fertilization, and cropping patterns promote carbon storage in ecosystems, they remain a small portion of the net carbon balance for the region. This detailed accounting of a region`s carbon balance is the type of foundation analysis needed by the new United Nations Collaborative Programmme for Reducing Emissions from Deforestation and Forest Degradation (REDD).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sedimentary organic matter is a good tool for environmental evaluation where the sediments are deposited. We determined the elemental and C- and N-isotopic compositions of 211 sub-surface sediment samples from 13 cores (ranging from 18 to 46cm), collected in the Cananeia-Iguape estuarine-lagoonal system. The aim of this research is to evaluate the environmental variations of this tropical coastal micro-tidal system over the last decades, through SOM distribution. The studied parameters show differences between the cores located in the northern (sandy-silt sediments) and southern (sand and silty-sand) portions. The whole area presents a mixed organic matter origin signature (local mangrove plants: < -25.6 parts per thousand PDB/ phytoplancton delta(13)C values: -19.4 parts per thousand PDB). The northern cores, which submitted higher sedimentation deposition (1.46cm year(-1)), are more homogenous, presenting lower delta(13)C (< -25.2 parts per thousand PDB) and higher C/N values (in general >14), directly related to the terrestrial input from Ribeira de Iguape River (24,000 km(2) basin). The southern portion presents lower sedimentation rates (0.38cm year(-1)) and is associated to a small river basin (1,340 km(2)), presenting values Of delta(13)C: -25.0 to 23.0 parts per thousand PDB and of C/N ratio: 11 to 15. In general, the elemental contents in the 15 cores may be considered from low to medium (< 2.0% C - < 0.1% N), compared to similar environments. Although a greater marine influence is observed in the southern system portion, the majority of the cores present an elevated increase of continental deposition, most likely related to the strong silting process that the area has been subjected to since the 1850s, when an artificial channel was built linking, directly, the Ribeira River to the estuarine-lagoonal system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this study was to evaluate dissolved organic and inorganic carbon dynamics along upstream and downstream reaches of the Acre River draining the city of Rio Branco, in the state of Acre, Brazil. Dissolved organic carbon (DOC) concentrations in the Acre River were significantly higher during the wet season, ranging from 385 +/- A 160 to 430 +/- A 131 mu M among the stations, with no difference in upstream and downstream concentrations. Dissolved inorganic carbon (DIC) showed an inverse pattern, with higher concentrations in the dry season, ranging from 816 +/- A 215 to 998 +/- A 754 mu M among the stations, as well as no difference in upstream and downstream DIC concentrations. Bicarbonate was the dominant DIC fraction and was mainly observed during the dry season. Due to lower pH values during the wet season, CO(2) partial pressure (pCO(2)) in the Acre River was higher in the wet season, with values ranging from 4,567 +/- A 1,813 to 4,893 +/- A 837 ppm among the stations. Our results indicate that, although the Acre River drains a large city with significant sewage disposal into the river, seasonal hydrological processes are the main driver of dissolved carbon dynamics, even in the downstream study reach directly influenced by urbanization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since 2000, the southwestern Brazilian Amazon has undergone a rapid transformation from natural vegetation and pastures to row-crop agricultural with the potential to affect regional biogeochemistry. The goals of this research are to assess wavelet algorithms applied to MODIS time series to determine expansion of row-crops and intensification of the number of crops grown. MODIS provides data from February 2000 to present, a period of agricultural expansion and intensification in the southwestern Brazilian Amazon. We have selected a study area near Comodoro, Mato Grosso because of the rapid growth of row-crop agriculture and availability of ground truth data of agricultural land-use history. We used a 90% power wavelet transform to create a wavelet-smoothed time series for five years of MODIS EVI data. From this wavelet-smoothed time series we determine characteristic phenology of single and double crops. We estimate that over 3200 km(2) were converted from native vegetation and pasture to row-crop agriculture from 2000 to 2005 in our study area encompassing 40,000 km(2). We observe an increase of 2000 km(2) of agricultural intensification, where areas of single crops were converted to double crops during the study period. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stream discharge-concentration relationships are indicators of terrestrial ecosystem function. Throughout the Amazon and Cerrado regions of Brazil rapid changes in land use and land cover may be altering these hydrochemical relationships. The current analysis focuses on factors controlling the discharge-calcium (Ca) concentration relationship since previous research in these regions has demonstrated both positive and negative slopes in linear log(10)discharge-log(10)Ca concentration regressions. The objective of the current study was to evaluate factors controlling stream discharge-Ca concentration relationships including year, season, stream order, vegetation cover, land use, and soil classification. It was hypothesized that land use and soil class are the most critical attributes controlling discharge-Ca concentration relationships. A multilevel, linear regression approach was utilized with data from 28 streams throughout Brazil. These streams come from three distinct regions and varied broadly in watershed size (< 1 to > 10(6) ha) and discharge (10(-5.7)-10(3.2) m(3) s(-1)). Linear regressions of log(10)Ca versus log(10)discharge in 13 streams have a preponderance of negative slopes with only two streams having significant positive slopes. An ANOVA decomposition suggests the effect of discharge on Ca concentration is large but variable. Vegetation cover, which incorporates aspects of land use, explains the largest proportion of the variance in the effect of discharge on Ca followed by season and year. In contrast, stream order, land use, and soil class explain most of the variation in stream Ca concentration. In the current data set, soil class, which is related to lithology, has an important effect on Ca concentration but land use, likely through its effect on runoff concentration and hydrology, has a greater effect on discharge-concentration relationships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cerrado is the second largest Brazilian biome and contains the headwaters of three major hydrological basins in Brazil. In spite of the biological and ecological relevance of this biome, there is little information about how land use changes affect the chemistry of low-order streams in the Cerrado. To evaluate these effects streams that drain areas under natural, rural, and urban land cover were sampled near Brasilia, Brazil. Water samples were collected between September 2004 and December 2006. Chemical concentrations generally followed the pattern of Urban > Rural > Natural. Median conductivity of stream water of 21.6 (interquartile: 22.7) mu S/cm in urban streams was three and five-fold greater relative to rural and natural areas, respectively. In the wet season, despite of increasing discharge, concentration of many solutes were higher, particularly in rural and natural streams. Streams also presented higher total dissolved N (TDN) loads from natural to rural and urban although DIN:DON ratios did not differ significantly. In natural and urban streams TDN was 80 and 77% dissolved organic N, respectively. These results indicate that alterations in land cover from natural to rural and urban are changing stream water chemistry in the Cerrado with increasing solute concentrations, in addition to increased TDN output in areas under urban cover, with potential effects on ecosystem function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twenty-two (14)C datings were performed at the central sector of the Parana coast to define Holocene regressive barrier evolution. The barrier Pleistocene substratum was ascribed an age between 40400 and 30000 yr BP, but it can also represent the penultimate sea level highstand during marine isotope stage 5e. The Holocene barrier samples provided ages between 8542-8279 and 2987-2751 cal yr BP, and showed at least six age inversions that were related to age differences between in situ or low-distance transported shells or trunk fragments, and high-distance transported vegetal debris, wood fragments and organic matter samples. The regressive Holocene barrier age was 4402-4135 cal yr BP near the base, and 2987-2751 cal yr BP near the top. Most of the vegetal remains were transported by ebb tidal currents from the estuaries to the inner shelf below wave base level during the mid-Holocene highstand; they were transported onshore by storm waves and littoral currents during the sea level lowering after the sea level maximum, and were deposited mainly as middle shoreface swaley cross-stratification facies. (C) 2008 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mangrove sediments are anaerobic ecosystems rich in organic matter. This environment is optimal for anaerobic microorganisms, such as sulphate-reducing bacteria and methanogenic archaea, which are responsible for nutrient cycling. In this study, the diversity of these two functional guilds was evaluated in a pristine mangrove forest using denaturing gradient gel electrophoresis (DGGE) and clone library sequencing in a 50 cm vertical profile sampled every 5.0 cm. DGGE profiles indicated that both groups presented higher richness in shallow samples (0-30 cm) with a steep decrease in richness beyond that depth. According to redundancy analysis, this alteration significantly correlated with a decrease in the amount of organic matter. Clone library sequencing indicated that depth had a strong effect on the selection of dissimilatory sulphate reductase (dsrB) operational taxonomic units (OTUs), as indicated by the small number of shared OTUs found in shallow (0.0 cm) and deep (40.0 cm) libraries. On the other hand, methyl coenzyme-M reductase (mcrA) libraries indicated that most of the OTUs found in the shallow library were present in the deep library. These results show that these two guilds co-exist in these mangrove sediments and indicate important roles for these organisms in nutrient cycling within this ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sustainability of fast-growing tropical Eucalyptus plantations is of concern in a context of rising fertilizer costs, since large amounts of nutrients are removed with biomass every 6-7 years from highly weathered soils. A better understanding of the dynamics of tree requirements is required to match fertilization regimes to the availability of each nutrient in the soil. The nutrition of Eucalyptus plantations has been intensively investigated and many studies have focused on specific fluxes in the biogeochemical cycles of nutrients. However, studies dealing with complete cycles are scarce for the Tropics. The objective of this paper was to compare these cycles for Eucalyptus plantations in Congo and Brazil, with contrasting climates, soil properties, and management practices. The main features were similar in the two situations. Most nutrient fluxes were driven by crown establishment the two first years after planting and total biomass production thereafter. These forests were characterized by huge nutrient requirements: 155, 10, 52, 55 and 23 kg ha(-1) of N, P, K, Ca and Mg the first year after planting at the Brazilian study site, respectively. High growth rates the first months after planting were essential to take advantage of the large amounts of nutrients released into the soil solutions by organic matter mineralization after harvesting. This study highlighted the predominant role of biological and biochemical cycles over the geochemical cycle of nutrients in tropical Eucalyptus plantations and indicated the prime importance of carefully managing organic matter in these soils. Limited nutrient losses through deep drainage after clear-cutting in the sandy soils of the two study sites showed the remarkable efficiency of Eucalyptus trees in keeping limited nutrient pools within the ecosystem, even after major disturbances. Nutrient input-output budgets suggested that Eucalyptus plantations take advantage of soil fertility inherited from previous land uses and that long-term sustainability will require an increase in the inputs of certain nutrients. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soil organic matter (SOM) extracted under different vegetation types from a Brazilian mangrove (Pai Matos Island, Sao Paulo State) and from three Spanish salt marshes (Betanzos Ria and Corrubedo Natural Parks, Galicia, and the Albufera Natural Park, Valencia) was investigated by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The chemical variation was larger in SOM from the Spanish marshes than in the SOM of the Brazilian mangroves, possibly because the marshes included sites with both tidal and nontidal variation, whereas the mangrove forest underwent just tidal variation. Thus, plant-derived organic matter was better preserved under permanently anoxic environments. Moreover, given the low number of studied profiles and sedimentary-vegetation sequences in both areas, depth trends remain unclear. The chemical data also allow distinction between the contributions of woody and nonwoody vegetation inputs. Soil organic matter decomposition was found to cause: (i) a decrease in lignin contents and a relative increase in aliphatics; (ii) an increase in short-chain aliphatics at the expense of longer ones; (iii) a loss of odd-over-even dominance in alkanes and alkenes; and (iv) an increase in microbial products, including proteins, sterols, short-chain fatty acids, and alkanes. Pyrolysis-gas chromatography/mass spectrometry is a useful tool to study the behavior and composition of SOM in wetland environments such as mangroves and salt marshes. Additional profiles need to be studied for each vegetation type, however, to improve the interpretability of the chemical data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Humic substances (HS) from salt marsh soils were characterized and the relationships among HS composition and some geochemical factors were analysed. For this, three salt marshes with the same vegetation cover (Juncus maritimus), but with different geochemical characteristics, were selected. The qualitative characterization of the soil humic acids and fulvic acids was carried out by elemental analysis, FTIR spectroscopy, fluorescence spectroscopy and VACP/MAS (13)C NMR spectroscopy. HS from salt marsh soils under sea rush (Juncus maritimus) displayed some shared characteristics such as low degree of humification, low aromatic content and high proportion of labile compounds, mainly polysaccharides and proteins. However, although the three salt marsh soils under study were covered by the same type of vegetation, the HS showed some important differences. HS composition was found to be determined not only by the nature of the original organic material, but also by environmental factors such as soil texture, redox conditions and tidal influence. In general. an increase in the humification process appeared to be related to aerobic conditions and predominance of sand in the mineral fraction of the soil, while the preservation of labile organic compounds may be associated with low redox potential values and fine soil texture. (C) 2008 Elsevier Ltd. All rights reserved.