28 resultados para Behavioral Intention


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In ostariophysan fish, the detection of alarm substance released from the skin of a conspecific or a sympatric heterospecific may elicit alarm reactions or antipredator behavioral responses. In this study, experiments were performed to characterize and quantify the behavioral response threshold of Leporinus piau, both individually and in schools, to growing dilutions of conspecific (CAS) and heterospecific skin extract (HAS). The predominant behavioral response to CAS stock stimulation was biphasic for fish held individually, with a brief initial period of rapid swimming followed by a longer period of immobility or reduced swimming activity. As the dilution of skin extract was increased, the occurrence and magnitude of the biphasic alarm response tended to decrease, replaced by a slowing of locomotion. Slowing was the most common antipredator behavior, observed in 62.5% of animals submitted to HAS stimulation. School cohesion, measured as proximity of fish to the center of the school, and swimming activity near the water surface significantly increased after exposure to CAS when compared with the control group exposed to distilled water. Histological analysis of the epidermis revealed the presence of Ostariophysi-like club cells. The presence of these cells and the behavioral responses to conspecific and heterospecific skin extract stimulation suggest the existence of a pheromone alarm system in L. piau similar to that in Ostariophysi, lending further support for the neural processing of chemosensory information in tropical freshwater fish.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ictal behavior coupled with SPECT findings during 28 seizures in patients with temporal lobe epilepsy (TLE) with unilateral hippocampal sclerosis (13 left; 15 right) was displayed as flowcharts from right-sided (RTLE) plus left-sided (LTLE) seizures. Ictal SPECT was classified blind to neuroethology. Behaviors were categorized as ipsilateral to the epileptogenic zone (IL), contralateral to the epileptogenic zone (CL), or bilateral. SPECT intensity and region were categorized as IL or CL to the epileptogenic zone. All patients developed automatisms and had hyperperfusion in their temporal lobes. Patients` verbal responses to questions had statistical interactions in RTLE but not in LTLE sum. Most CL dystonic posturing was correlated to IL basal ganglia hyperperfusion. Basal ganglia activation occurred in seizures without dystonic posturing and CL manual automatisms, and lack of IL dystonic posturing and the presence of CL cerebellar hemispheric hyperperfusion were also observed. Coupling of neuroethology and SPECT findings reliably evaluates ictal behavior and functionality of associated brain areas. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chronic mild stress (CMS) model has been used as an animal model of depression which induces anhedonic behavior in rodents. The present study was aimed to evaluate the behavioral and physiological effects of administration of P-carboline harmine in rats exposed to CMS Procedure. To this aim, after 40 days of exposure to CMS procedure, rats were treated with harmine (15 mg/kg/day) for 7 days. In this study, sweet food consumption, adrenal gland weight, adrenocorticotrophin hormone (ACTH) levels, and hippocampal brain-derived-neurotrophic factor (BDNF) protein levels were assessed. Our findings demonstrated that chronic stressful situations induced anhedonia, hypertrophy of adrenal gland weight, increase ACTH circulating levels in rats and increase BDNF protein levels. Interestingly, treatment with harmine reversed anhedonia, the increase of adrenal gland weight, normalized ACTH circulating levels and BDNF protein levels. Finally, these findings further support the hypothesis that harmine could be a new pharmacological tool for the treatment of depression. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Larval behavioral diapause was shown to be the major factor controlling the 1-yr generation pattern of Amblyomma cajennense (F.) (Acari: Ixodidae) in Brazil. During fieldwork, this behavior was shown to coincide with long daylength (>12 h) and high mean ground temperature (approximate to 25 degrees C), which prevail during spring-summer in Brazil. The current study evaluated biological parameters of engorged females, their eggs, and the resultant larvae inside plastic pots planted with the grass Brachiaria decumbens Stapf. held in incubators set with different combinations of temperature and photoperiod. Both the long daylength (photoperiod 14:10 [L:D]h) and high temperature (25 degrees C) during larval hatching induced larval behavioral diapause, characterized by the confinement of hatched larvae on the ground below the vegetation for many weeks. When long daylength was present during hatching, but temperature was low (15 degrees C), larvae did not enter diapause. Similarly, when short daylength (10:14 or 12:12) was present during larval hatching, larvae did not enter diapause regardless whether temperature was high (25 degrees C). Termination of diapause was induced by shifting photoperiod from 14:10 to 12:12 or the temperature from 25 to 15 degrees C. When applied to field conditions, the present results indicate that both high ground mean temperature (approximate to 25 degrees C) and long daylength (>12 h) during spring-summer (October-March) are responsible for the induction and maintenance of A. cajennense larval behavioral diapause in the field. Furthermore, both the low ground mean temperature (-20 degrees C) and the short daylength (<12h) during autumn (April-May) are responsible for termination of larval behavioral diapause in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute infections lead to alterations in behavior, collectively known as sickness behavior. which includes reduction in locomotion, food ingestion, sexual and social behavior, environmental exploration, and sleep profile. Although generally seen as undesired, sickness behavior represents a conserved strategy for animals to overcome disease. Aging process is associated with a variety of changes in immunity, which are referred to as immunosenescence, and include higher mortality by infectious diseases. Few works studied sickness behavior display in old animals. Thus, we sought to investigate the display of sickness related behaviors on aged mice. Adult(3-6 months old), middle-aged (12-15 m) and aged mice (18-22 m)were treated with i.p. LPS (200 mu g/kg) and their behaviors were assessed in the open field and in the elevated plus-maze. Exploratory activity was similar in aged mice treated or not with LPS in both apparati. In the open field, locomotion remained at baseline levels; in the elevated plus-maze, there was a time-dependent decrease in motor activity. (C) 2008 Elsevier Inc. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavioral effects of the K-opioid receptor agonist U69593 were examined in lactating rats. On day 5 of lactation, animals were treated with 0.1 mg/kg of U69593 to determine whether it influences general activity and maternal latencies toward pups. Because little attention has been given to the possibility that pre-mating treatment with morphine may modulate the response to K-opioid receptor stimulation, another group of animals was submitted to the same acute challenge after abrupt withdrawal from repeated treatment with morphine sulfate during the pre-mating period (5 mg/kg on alternate days for a total of five doses). Acute F;opioid stimulation reduced total locomotion, rearing frequency, and time spent self-grooming and increased immobility duration. These K agonist effects were not observed in animals pretreated with morphine. Similarly, latencies to retrieve pups were longer only in animals pretreated with saline and challenged acutely with U69593. None of these effects were observed in morphine sulfate-pretreated animals. The present results suggest that pre-mating repeated exposure to morphine produces a tolerance-like effect on behavioral responses to low-dose K-opioid receptor stimulation in active reproductive females. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relevance and property of studies related to stress effects on immune function are undisputable. All studies conducted on stress-immune relationships, however, provide from physical and/or psychological stressors. Indeed, as far as it is of our knowledge brain-innate immune responses were not analyzed after anxiogenic-like drugs use. The present experiment was then undertaken to analyze the effects of picrotoxin (0.3, 0.6 and 1.0 mg/kg doses) on behavior, macrophage activity, serum corticosterone and noradrenaline (NE) levels and turnover in the brain of adult mice. Results showed that picrotoxin treatment in mice: (1) decreased motor and rearing activities in an open-field; (2) decreased the number of entries into the plus-maze open-arms and decreased the time spent in the exploration of the plus-maze open-arms; (3) decreased both motor activity and the level of holes exploration in the hole-board; (4) increased the levels of serum corticosterone in dose-dependent way; (5) increased noradrenaline (NE) and MHPG levels and NE turnover in the hypothalamus; and (6) increased Staphylococcus aureus and PMA-induced macrophage oxidative burst. However, and contrary to that reported after physical or psychological stress, this drug induced no effects on macrophage phagocytosis and NE levels and turnover in the frontal cortex. The present results are thus showing that picrotoxin induces some but not all neuro-innate immunity changes previously reported for inescapable foot-shock and psychological stressors in mice. These facts suggest that this chemical stressor triggers CNS pathways that might be somehow different from those fired by inescapable foot-shock and psychological stressors, leading to different neuro-innate immune responses. (C) 2007 Elsevier Ltd. All fights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have been widely associated to beneficial effects over different neuropathologies, but only a few studies associate them to Parkinson`s disease (PD). Rats were submitted to chronic supplementation (21-90 days of life) with fish oil, rich in omega-3 PUFAs, and were uni- or bilaterally lesioned with 4 mu g of the neurotoxin 6-hydroxydopamine (6-OHDA) in the medial forebrain bundle Although lipid incorporation was evidenced in neuronal membranes, it was not sufficient to compensate motor deficits induced by 6-OHDA. In contrast, omega-3 PUFAs were capable of reducing rotational behavior induced by apomorphine, suggesting neuroprotection over dyskinesia The beneficial effects of omega-3 PUFAs were also evident in the maintenance of thiobarbituric acid reactive substances index from animals lesioned with 6-OHDA similar to levels from SHAM and intact animals. Although omega-3 PUFAs did not modify the tyrosine hydroxylase immunoreactivity in the substantia nigra pars compacta and in the ventral tegmental area, nor the depletion of dopamine (DA) and its metabolites in the striatum, DA turnover was increased after omega-3 PUFAs chronic supplementation Therefore, it is proposed that omega-3 PUFAs action characterizes the adaptation of remaining neurons activity. altering striatal DA turnover without modifying the estimated neuronal population. (C) 2009 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) is thought to play a key role in the development of hypoxia-induced anapyrexia in mammals, acting on the preoptic region of the anterior hypothalamus to activate autonomic heat loss responses. Regarding behavioral thermoregulation, no data exists for NO modulation/mediation of thermoregulatory behavior changes during hypoxia. Therefore, we tested the hypothesis that NO is involved in the preferred body temperature (Tb) reduction in the hypoxic toad Chaunus schneideri (formerly Bufo paracnemis), a primarily behavioral thermoregulator. Toads equipped with a temperature probe were placed in a thermal gradient chamber, and preferred Tb was monitored continuously. We analyzed the effect of intracerebroventricular injections of the nonselective NO synthase inhibitor L-NMMA (200, 400 and 800 microg per animal) or mock cerebrospinal fluid (mCSF, vehicle) on the preferred Tb of toads. No significant difference in preferred Tb was observed after L-NMMA treatments. Another group of toads treated with 2 mg kg(-1) (400 microg per animal) of L-NMMA or mCSF was submitted to hypoxia (3% inspired 02) for 8 h. The vehicle group showed a reduction of preferred Tb, a response that was inhibited by L-NMMA. A 3rd group of hypoxic animals was injected with Ringer or L-NMMA (2 mg kg(-1)) into the lymph sac and both treatments induced no change in the anapyretic response to hypoxia. These results indicate that NO acting on the central nervous system has an excitatory role for the development of hypoxia-induced anapyrexia in toads. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Competition for floral resources is a key force shaping pollinator communities, particularly among social bees. The ability of social bees to recruit nestmates for group foraging is hypothesized to be a major factor in their ability to dominate rich resources such as mass-flowering trees. We tested the role of group foraging in attaining dominance by stingless bees, eusocial tropical pollinators that exhibit high diversity in foraging strategies. We provide the first experimental evidence that meliponine group foraging strategies, large colony sizes and aggressive behavior form a suite of traits that enable colonies to improve dominance of rich resources. Using a diverse assemblage of Brazilian stingless bee species and an array of artificial ""flowers"" that provided a sucrose reward, we compared species` dominance and visitation under unrestricted foraging conditions and with experimental removal of group-foraging species. Dominance does not vary with individual body size, but rather with foraging group size. Species that recruit larger numbers of nestmates (Scaptotrigona aff. depilis, Trigona hyalinata, Trigona spinipes) dominated both numerically (high local abundance) and behaviorally (controlling feeders). Removal of group-foraging species increased feeding opportunities for solitary foragers (Frieseomelitta varia, Melipona quadrifasciata and Nannotrigona testaceicornis). Trigona hyalinata always dominated under unrestricted conditions. When this species was removed, T. spinipes or S. aff. depilis controlled feeders and limited visitation by solitary-foraging species. Because bee foraging patterns determine plant pollination success, understanding the forces that shape these patterns is crucial to ensuring pollination of both crops and natural areas in the face of current pollinator declines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have demonstrated that treatment of postpartum female rats with morphine inhibits maternal behavior and stimulates foraging. Exposure to drugs of abuse may result in a progressive enhancement of their reinforcing effects. Puerperal treatment with morphine leads to reverse tolerance to this drug. The present study investigated whether repeated morphine treatment during late pregnancy may influence the effects of different morphine dosages on behavioral selection in lactating rats. Females were simultaneously exposed to pups and insects, and the choice between taking care of the pups and hunting insects was observed. Female Wistar rats were treated with morphine (3.5 mg/kg/day, subcutaneous [s.c.]) or saline for 5 days beginning on pregnancy day 17. On day 5 of lactation, animals were acutely challenged with morphine (0.5, 1.0, or 1.5 mg/kg, s.c.; MM0.5, MM1.0, and MM1.5 groups, respectively) or saline (MS group) and tested for predatory hunting and maternal behavior. Control groups were pretreated with saline and challenged with morphine (SM0.5, SM1.0, and SM1.5 groups) or saline (SS group). Animals treated with morphine during late pregnancy and acutely challenged with 1.0 mg/kg morphine (MM1.0 group) exhibited significantly decreased maternal behavior and enhanced hunting. This effect was not evident with the 0.5 mg/kg dose. The 1.5 mg/kg morphine dose decreased maternal behavior and increased hunting in both the MM1.5 group and in animals challenged with morphine after previous saline treatment (SM1.5 group). These results provide evidence of plasticity of the opioidergic role in behavioral selection during lactation. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeated administration of low doses of ethanol gradually increases locomotor responses to ethanol in adult Swiss mice. This phenomenon is known as behavioral sensitization. However, we have shown that adolescent Swiss mice show either behavioral tolerance or no sensitization after repeated ethanol injections. Although the mesolimbic dopamine system has been extensively implicated in behavioral sensitization, several studies have demonstrated an important role of glutamatergic transmission in this phenomenon. In addition, relatively few studies have examined the role of developmental factors in behavioral sensitization to ethanol. To examine the relationship between age differences in behavioral sensitization to ethanol and the neurochemical adaptations related to glutamate within nucleus accumbens (NAc), in vivo microdialysis was conducted in adolescent and adult Swiss mice treated with ethanol (1.8 g/kg) or saline for 15 days and subsequently challenged with an acute dose (1.8 g/kg) of ethanol 6 days later. Consistent with previous findings, only adult mice demonstrated evidence of behavioral sensitization. However, ethanol-treated adolescent mice demonstrated a 196.1 +/- 40.0% peak increase in extracellular levels of glutamate in the NAc after ethanol challenge in comparison with the basal values, whereas ethanol-treated adult mice demonstrated a 52.2 +/- 6.2% reduction in extracellular levels of glutamate in the NAc after ethanol challenge. These observations suggest an age-dependent inverse relationship between behavioral and glutamatergic responses to repeated ethanol exposure. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nandrolone is an anabolic-androgenic steroid (AAS) that is highly abused by individuals seeking enhanced physical strength or body appearance. Supraphysiological doses of this synthetic testosterone derivative have been associated with many physical and psychiatric adverse effects, particularly episodes of impulsiveness and overt aggressive behavior. As the neural mechanisms underlying AAS-induced behavioral disinhibition are unknown, we investigated the status of serotonergic system-related transcripts in several brain areas of mice receiving prolonged nandrolone administration. Male C57BL/6J mice received 15 mg/kg of nandrolone decanoate subcutaneously once daily for 28 days, and different sets of animals were used to investigate motor-related and emotion-related behaviors or 5-HT-related messenger RNA (mRNA) levels by real-time quantitative polymerase chain reaction. AAS-injected mice had increased body weight, were more active and displayed anxious-like behaviors in novel environments. They exhibited reduced immobility in the forced swim test, a higher probability of being aggressive and more readily attacked opponents. AAS treatment substantially reduced mRNA levels of most investigated postsynaptic 5-HT receptors in the amygdala and prefrontal cortex. Interestingly, the 5-HT(1B) mRNA level was further reduced in the hippocampus and hypothalamus. There was no alteration of 5-HT system transcript levels in the midbrain. In conclusion, high doses of AAS nandrolone in male mice recapitulate the behavioral disinhibition observed in abusers. Furthermore, these high doses downregulate 5-HT receptor mRNA levels in the amygdala and prefrontal cortex. Our combined findings suggest these areas as critical sites for AAS-induced effects and a possible role for the 5-HT(1B) receptor in the observed behavioral disinhibition.