25 resultados para BRIDGED MOLECULAR-SYSTEMS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adequate initial configurations for molecular dynamics simulations consist of arrangements of molecules distributed in space in such a way to approximately represent the system`s overall structure. In order that the simulations are not disrupted by large van der Waals repulsive interactions, atoms from different molecules Must keep safe pairwise distances. Obtaining Such a molecular arrangement can be considered it packing problem: Each type molecule must satisfy spatial constraints related to the geometry of the system, and the distance between atoms of different molecules Must be greater than some specified tolerance. We have developed a code able to pack millions of atoms. grouped in arbitrarily complex molecules, inside a variety of three-dimensional regions. The regions may be intersections of spheres, ellipses, cylinders, planes, or boxes. The user must provide only the structure of one molecule of each type and the geometrical constraints that each type of molecule must satisfy. Building complex mixtures, interfaces, solvating biomolecules in water, other solvents, or mixtures of solvents, is straight forward. In addition. different atoms belonging to the same molecule may also be restricted to different spatial regions, in Such a way that more ordered molecular arrangements call be built, as micelles. lipid double-layers, etc. The packing time for state-of-the-art molecular dynamics systems varies front a few seconds to a few Minutes in a personal Computer. The input files are simple and Currently compatible with PDB, Tinker, Molden, or Moldy coordinate files. The package is distributed as free software and call be downloaded front http://www.ime.unicamp.br/similar to martinez/packmol/. (C) 2009 Wiley Periodicals. Inc. J Comput Chem 30: 2157-2164, 2009

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the time evolution of an exactly solvable cellular automaton with random initial conditions both in the large-scale hydrodynamic limit and on the microscopic level. This model is a version of the totally asymmetric simple exclusion process with sublattice parallel update and thus may serve as a model for studying traffic jams in systems of self-driven particles. We study the emergence of shocks from the microscopic dynamics of the model. In particular, we introduce shock measures whose time evolution we can compute explicitly, both in the thermodynamic limit and for open boundaries where a boundary-induced phase transition driven by the motion of a shock occurs. The motion of the shock, which results from the collective dynamics of the exclusion particles, is a random walk with an internal degree of freedom that determines the jump direction. This type of hopping dynamics is reminiscent of some transport phenomena in biological systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decomposition of organic hydroperoxides into peroxyl radicals is a potential source of singlet molecular oxygen [O(2) ((1)Delta(g))] in biological systems. This study shows that 5-(hydroperoxymethyl)uracil (5-HPMU), a thymine hydroperoxide within DNA, reacts with metal ions or HOCl, generating O(2) ((1)Delta(g)). Spectroscopic evidence for generation of O(2) ((1)Delta(g)) was obtained by measuring (i) the bimolecular decay, (ii) the monomolecular decay, and (iii) the observation of D(2)O enhancement of O(2) ((1)Delta(g)) production and the quenching effect of NaN(3). Moreover, the presence of O(2) ((1)Delta(g)) was unequivocally demonstrated by the direct characterization of the near-infrared light emission. For the sake of comparison, O(2) ((1)Delta(g)) derived from the H(2)O(2)/HOCl system and from the thermolysis of the N,N`-di(2,3-dihydroxypropyl)-1,4-naphthalenedipropanamide endoperoxide was also monitored. More evidence of O(2) ((1)Delta(g)) generation was obtained by chemical trapping of O(2) ((1)Delta(g)) with anthracene-9,10-divinylsulfonate (AVS) and detection of the specific AVS endoperoxide by HPLC/MS/MS. The detection by HPLC/MS of 5-(hydroxymethyl)uracil and 5-formyluracil, two thymine oxidation products generated from the reaction of 5-HPMU and Ce(4+) ions, supports the Russell mechanism. These photoemission properties and chemical trapping clearly demonstrate that the decomposition of 5-HPMU generates O(2) ((1)Delta(g)) by the Russell mechanism and point to the involvement of O(2) ((1)Delta(g)) in thymidine hydroperoxide cytotoxicity. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A few years ago, it was reported that ozone is produced in human atherosclerotic arteries, on the basis of the identification of 3 beta-hydroxy-5-oxo-5,6-secocholestan-6-al and 3 beta-hydroxy-5 beta-hydroxy-B-norcholestane-6 beta-carboxaldehyde (ChAld) as their 2,4-dinitrophenylhydrazones. The formation of endogenous ozone was attributed to water oxidation catalyzed by antibodies, with the formation of dihydrogen trioxide as a key intermediate. We now report that ChAld is also generated by the reaction of cholesterol with singlet molecular oxygen [O(2) ((1)Delta(g))] that is produced by photodynamic action or by the thermodecomposition of 1,4-dimethylnaphthalene endoperoxide, a defined pure chemical source of O(2) ((1)Delta(g)). On the basis of (18)O-labeled ChAld mass spectrometry, NMR, light emission measurements, and derivatization studies, we propose that the mechanism of ChAld generation involves the formation of the well-known cholesterol 5 alpha-hydroperoxide (5 alpha-OOH) (the major product of O(2) ((1)Delta(g))-oxidation of cholesterol) and/or a 1,2-dioxetane intermediate formed by O(2) ((1)Delta(g)) attack at the Delta(5) position. The Hock cleavage of 5 alpha-OOH (the major pathway) or unstable cholesterol dioxetane decomposition (a minor pathway, traces) gives a 5,6-secosterol intermediate, which undergoes intramolecular aldolization to yield ChAld. These results show clearly and unequivocally that ChAld is generated upon the reaction of cholesterol with O(2) ((1)Delta(g)) and raises questions about the role of ozone in biological processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In mammalian membranes, cholesterol is concentrated in lipid rafts. The generation of cholesterol hydroperoxides (ChOOHs) and their decomposition products induces various types of cell damage. The decomposition of some organic hydroperoxides into peroxyl radicals is known to be a potential source of singlet molecular oxygen [O(2) ((1)Delta(g))] in biological systems. We report herein on evidence of the generation of O(2) ((1)Delta(g)) from ChOOH isomers in solution or in liposomes containing ChOOHs, which involves a cyclic mechanism from a linear tetraoxide intermediate originally proposed by Russell. Characteristic light emission at 1270 nm, corresponding to O(2) ((1)Delta(g)) monomolecular decay, was observed for each ChOOH isomer or in liposomes containing ChOOHs. Moreover, the presence of O(2) ((1)Delta(g)) was unequivocally demonstrated using the direct spectral characterization of near-infrared light emission. Using (18)O-labeled cholesterol hydroperoxide (Ch(18)O(18)OH), we observed the formation of (18)O-labeled O(2) ((1)Delta(g)) [(18)O(2) ((1)Delta(g))] by the chemical trapping of (18)O(2) ((1)Delta(g)) with 9,10-diphenylanthracene (DPA) and detected the corresponding (18)O-labeled DPA endoperoxide (DPA(18)O(18)O) and the (18)O-labeled products of the Russell mechanism using high-performance liquid chromatography coupled to tandem mass spectrometry. Photoemission properties and chemical trapping clearly demonstrate that the decomposition of Ch(18)O(18)OH generates (18)O(2) ((1)Delta(g)), which is consistent with the Russell mechanism and points to the involvement of O(2) ((1)Delta(g)) in cholesterol hydroperoxide-mediated cytotoxicity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antioxidant potential is generally investigated by assaying the ability of a compound to protect biological systems from free radicals. However, non-radical reactive oxygen species can also be harmful. Singlet molecular oxygen ((1)O(2)) is generated by energy transfer to molecular oxygen. The resulting (1)O(2) is able to oxidize the nucleoside 2`-deoxyguanosine (dGuo), which leads to the formation of 8-oxo-7,8-dihydro-2`-deoxyguanosine (8-oxodGuo) and spiroiminodihydantoin 2`-deoxyribonucleoside diastereomers (dSp) in an aqueous solution. The main objective of the present study was to verify whether the presence of flavonoids (flavone, apigenin, quercetin, morin and catechin) at different concentrations could protect dGuo from (1)O(2) damage. Of the tested flavonoids, flavone possessed antioxidant activity, as determined by a decrease in the formation of both products. Apigenin, morin, quercetin and catechin all increased the formation of 8-oxodGuo at a concentration of 100 mu M. The quantification of plasmid strand breaks after treatment with formamidopyrimidine-DNA glycosylase showed that flavone protected and quercetin and catechin enhanced DNA oxidation. Our results show that compounds, such as flavonoids, may affect the product distribution of (1)O(2)-mediated oxidation of dGuo, and, in particular, high concentrations of flavonoids with hydroxyl groups in their structure lead to an increase in the formation of the mutagenic lesion 8-oxodGuo. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pressure dependence of the glass-transition temperature, T(g)(P), of the ionic glass-former 2Ca(NO(3))(2) center dot 3KNO(3), CKN, has been obtained by molecular dynamics (MD) simulations The liquid-glass difference of thermal expansivity, Delta alpha, heat capacity, Delta C(p), and isothermal compressibility, Delta kappa, have been calculated as a function of pressure. It has been found that the Ehrenfest relation dT(g)/dP = TV Delta alpha/Delta C(p) predicts the pressure dependence of T, but the other Ehrenfest relation, dT(g)/dP = Delta kappa/Delta alpha, does not. Consequently, the Prigogine-Defay ratio, Pi = Delta C(p)Delta kappa/TV Delta alpha(2), is Pi similar to 1.2 at low pressures, but increases 1 order of magnitude at high pressures. The pressure dependence of the Prigogine-Defay ratio is interpreted in light of recent explanations for the finding Pi > 1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social and economical development is closely associated with technological innovation and a well-developed biotechnological industry. In the last few years, Brazil`s scientific production has been steadily increasing; however, the number of patents is lagging behind, with technological and translational research requiring governmental incentive and reinforcement. The Cell and Molecular Therapy Center (NUCEL) was created to develop activities in the translational research field, addressing concrete problems found in biomedical and veterinary areas and actively searching for solutions by employing a genetic engineering approach to generate cell lines over-expressing recombinant proteins to be transferred to local biotech companies, aiming at furthering the development of a national competence for local production of biopharmaceuticals of widespread use and of life-saving importance. To this end, mammalian cell engineering technologies were used to generate cell lines over-expressing several different recombinant proteins of biomedical and biotechnological interest, namely, recombinant human Amylin/IAPP for diabetes treatment, human FVIII and FIX clotting factors for hemophilia, human and bovine FSH for fertility and reproduction, and human bone repair proteins (BMPs). Expression of some of these proteins is also being sought with the baculovirus/insect cell system (BEVS) which, in many cases, is able to deliver high-yield production of recombinant proteins with biological activity comparable to that of mammalian systems, but in a much more cost-effective manner. Transfer of some of these recombinant products to local Biotech companies has been pursued by taking advantage of the Sao Paulo State Foundation (FAPESP) and Federal Government (FINEP, CNPq) incentives for joint Research Development and Innovation partnership projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports a state-of-the-art theoretical characterization of four new sulfur-bromine species and five transition states on the [H, S(2), Br] potential energy surface. Our highest level theoretical approach employed the method coupled cluster singles and doubles with perturbative contributions of connected triples, CCSD(T), along with the series of correlation-consistent basis sets and with extrapolation to the complete basis set (CBS) limit in the optimization of the geometrical parameters and to quantify the energetic quantities. The structural and vibrational frequencies here reported are unique and represent the most accurate investigation to date of these species. The global minimum corresponds to a skewed structure HSSBr with a disulfide bond; this is followed by a pyramidal-like structure, SSHBr, 18.85 kcal/mol above the minimum. Much higher in energy, we found another skewed structure, HSBrS (50.29 kcal/mol), with one S-Br dative-type bond, and another pyramidal-like one, HBrSS (109.80 kcal/mol), with two S-Br dative-type bonds. The interconversion of HSSBr into SSHBr can occur via a transfer of either the hydrogen or the bromine atom but involves a very high barrier of about 43 kcal/mol. These molecules are potentially a new route of coupling the sulfur and bromine chemistry in the atmosphere, and conditions of high concentration of H(2)S like in volcanic eruptions might contribute to their formation. We note that HSSBr can act as a reservoir molecule for the reaction between the radicals HSS and Br. Also, an assessment of the methods DFT/B3LYP/CBS and MP2/CBS relative to CCSD(T)/CBS provides insights on the expected performance of these methods on the characterization of polysulfides and also of more complex systems containing disulfide bridges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conformational features of three 2-sulphur-substituted cyclohexanone derivatives, which differ in the number of sulphur-bound oxygen atoms, i.e. zero (I), one (II) and two (III), were investigated by single crystal X-ray crystallography and geometry optimized structures determined using Hartree-Fock method. In each of (I)-(III) an intramolecular S center dot center dot center dot O(carbonyl) interaction is found with the magnitude correlated with the oxidation state of the sulphur atom, i.e. 2.838(3) angstrom in (I) to 2.924(2) angstrom in (II) to 3.0973(18) angstrom in (III). There is an inverse relationship between the strength of this interaction and the magnitude of the carbonyl bond. The supramolecular aggregation patterns are primarily determined by C-H center dot center dot center dot O contacts and are similarly influenced by the number of oxygen atoms in the molecular structures. Thus, a supramolecular chain is found in the crystal structure of (I). With an additional oxygen atom available to participate in C-H center dot center dot center dot O interactions, as in (II), a two-dimensional array is found. Finally, a three-dimensional network is found for (III). Despite there being differences in conformations between the experimental structures and those calculated in the gas-phase, the S center dot center dot center dot O interactions persist. The presence of intermolecular C-H center dot center dot center dot O interactions involving the cyclohexanone-carbonyl group in the solid-state, disrupts the stabilising intramolecular C-H center dot center dot center dot O interaction in the energetically-favoured conformation. (I): C(12)H(13)NO(3)S, triclinic space group P (1) over bar with a = 5.392(3) angstrom b = 10.731(6) angstrom, c = 11.075(6) angstrom, alpha = 113.424(4)degrees, beta = 94.167(9)degrees, gamma = 98.444(6)degrees, V = 575.5(6) angstrom(3), Z = 2, R(1) = 0.052; (II): C(12)H(13)NO(4)S, monoclinic P2(1)/n, a = 7.3506(15) angstrom, b = 6.7814(14) angstrom, c = 23.479(5) angstrom, beta = 92.94(3)degrees, V = 1168.8(4) angstrom(3), Z = 4, R(1) = 0.046; (III): C(12)H(13)NO(5)S, monoclinic P2(1)/c, a = 5.5491(11) angstrom, b = 24.146(3) angstrom, c = 11.124(3) angstrom, beta = 114.590(10)degrees, V = 1355.3(5) angstrom(3), Z = 4, R(1) = 0.051.