19 resultados para Auguste Viktoria, empress consort of William II, German emperor, 1858-1921.
Resumo:
This paper reports on the synthesis and characterization of two new ternary copper(II) complexes: [Cu(doxy-cycline)(1,10-phenanthroline)(H(2)O)(ClO(4))](ClO(4)) (1) and [Cu(tetracycline)(1,10-phenanthroline)(H(2)O)(ClO(4))](ClO(4)) (2). These compounds exhibit a distorted tetragonal geometry around copper, which is coordinated to two bidentate ligands, 1,10-phenanthroline and tetracycline or doxycyline, a water molecule, and a perchlorate ion weakly bonded in the axial positions. In both compounds, copper(II) binds to tetracyclines`. via the oxygen of the hydroxyl group and oxygen of the amide group at ring A and to 1,10-phenanthroline via its two heterocyclic nitrogens. We have evaluated the binding of the new complexes to DNA, their capacity to cleave it, their cytotoxic activity, and uptake in tumoral cells. The complexes bind to DNA preferentially by the major groove, and then cleave its strands by an oxidative mechanism involving the generation of ROS. The cleavage of DNA was inhibited by radical inhibitors and/or trappers such as superoxide dismutase, DMSO, and the copper(I) chelator bathocuproine. The enzyme T4 DNA ligase was not able to relegate the products of DNA cleavage, which indicates that the cleavage does not occur via a hydrolytic mechanism. Both complexes present an expressive plasmid DNA cleavage activity generating single- and double-strand breaks, under mild reaction conditions, and even in the absence of any additional oxidant or reducing agent. In the same experimental conditions, [Cu(phen)(2)](2+) is approximately 100-fold less active than our complexes. These complexes are among the most potent DNA cleavage agents reported so far. Both complexes inhibit the growth of K562 cells With the IC(50) values of 1.93 and 2.59 mu mol L(-1) for compounds I and 2, respectively. The complexes are more active than the free ligands, and their cytotoxic activity correlates with intracellular copper concentration and the number of Cu-DNA adducts formed inside cells.
Resumo:
A new method is presented for spectrophotometric determination of total polyphenols content in wine. The procedure is a modified CUPRAC method based on the reduction of Cu(II), in hydroethanolic medium (pH 7.0) in the presence of neocuproine (2,9-dimethyl-1,10-phenanthroline), by polyphenols, yielding a Cu(I) complexes with maximum absorption peak at 450 nm. The absorbance values are linear (r = 0.998, n = 6) with tannic acid concentrations from 0.4 to 3.6 mu mol L(-1). The limit of detection obtained was 0.41 mu mol L(-1) and relative standard deviation 1.2% (1 mu mol L(-1); n = 8). Recoveries between 80% and 110% (mean value of 95%) were calculated for total polyphenols determination in 14 commercials and 2 synthetic wine samples (with and without sulphite). The proposed procedure is about 1.5 more sensitive than the official Folin-Ciocalteu method. The sensitivities of both methods were compared by the analytical responses of several polyphenols tested in each method. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We report the synthesis and spectroscopic/electrochemical properties of iron(II) complexes of polydentate Schiff bases generated from 2-acetylpyridine and 1,3-diaminopropane, acetylpyrazine and 1,3-diaminopropane, and from 2-acetylpyridine and L-histidine. The complexes exhibit bis(diimine)iron(II) chromophores in association with pyrazine, pyridine or imidazole groups displaying contrasting pi-acceptor properties. In spite of their open geometry, their properties are much closer to those of macrocyclic tetraimineiron(II) complexes. An electrochemical/spectroscopic correlation between E degrees(Fe(III/II)) and the energies of the lowest MLCT band has been observed, reflecting the stabilization of the HOMO levels as a consequence of the increasing backbonding effects in the series of compounds. Mossbauer data have also confirmed the similarities in their electronic structure, as deduced from the spectroscopic and theoretical data. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The development and application of a functionalized carbon nanotubes paste electrode (CNPE) modified with crosslinked chitosan for determination of Cu(II) in industrial wastewater, natural water and human urine samples by linear scan anodic stripping voltammetry (LSASV) are described. Different electrodes were constructed using chitosan and chitosan crosslinked with glutaraldehyde (CTS-GA) and epichlorohydrin (CTS-ECH). The best voltammetric response for Cu(II) was obtained with a paste composition of 65% (m/m) of functionalized carbon nanotubes, 15% (m/m) of CTS-ECH, and 20% (m/m) of mineral oil using a solution of 0.05 mol L(-1) KNO(3) with pH adjusted to 2.25 with HNO(3), an accumulation potential of 0.3V vs. Ag/AgCl (3.0 mol L(-1) KCl) for 300 s and a scan rate of 100 mV s(-1). Under these optimal experimental conditions, the voltammetric response was linearly dependent on the Cu(II) concentration in the range from 7.90 x 10(-8) to 1.60 x 10(-5) mol L(-1) with a detection limit of 1.00 x 10(-8) mol L(-1). The samples analyses were evaluated using the proposed sensor and a good recovery of Cu(II) was obtained with results in the range from 98.0% to 104%. The analysis of industrial wastewater, natural water and human urine samples obtained using the proposed CNPE modified with CTS-ECH electrode and those obtained using a comparative method are in agreement at the 95% confidence level. (C) 2009 Elsevier B. V. All rights reserved.