55 resultados para Agricultural soils
Resumo:
Land cover change constitutes one of main way of alteration of soil organic matter in both quantitative and qualitative terms. The goal of this study was to compare the carbon stock and the isotopic signature of the organic matter in the soil of areas with different land use,covered with forest and grass (pasture). The study area is located at Sorocaba, SP, Brazil. Using un-deformed soil samples, we measured the carbon content and bulk density. The isotopic signature of soil carbon was determined through the analysis of isotopic ratio (12)C/(13)C. The pasture soil stocks 48% less carbon than the soil covered by natural forest. The isotopic signature indicated that 42.2% of organic matter of the soil covered by pasture is originated from grasses. This characterizes a highly degradation of organic matter in the environment, both quantitatively and qualitatively. Hence, some guidelines of recuperation are described in order to restore the soil organic matter, structure and porosity.
Resumo:
Black carbon (BC) may play ail important role in the global C budget, due to its potential to act as a significant sink of atmospheric CO(2). In order to fully evaluate the influence of BC oil the global C cycle, in understanding of the stability of BC is required. The biochemical stability of BC was assessed in a chronosequence of high-BC-containing Anthrosols from the central Amazon, Brazil, using a range of spectroscopic and biological methods. Results revealed that the Anthrosols had 61-80% lower (P < 0.05) CO(2) evolution per unit C over 532 days compared to their respective adjacent soils with low BC contents. No significant (P > 0.05) difference in CO(2) respiration per unit C was observed between Anthrosols with contrasting ages of BC (600-8700 years BP) Lind soil textures (0.3-36% clay). Similarly, the molecular composition of the core regions of micrometer-sized BC particles quantified by synchrotron-based Near-Edge X-ray Fine Structure (NEXAFS) spectroscopy coupled to Scanning Transmission X-ray Microscopy (STXM) remained similar regardless of their ages and closely resembled the spectral characteristics or fresh BC. BC decomposed extremely slowly to ail extent that it was not possible to detect chemical changes between Youngest and oldest samples, as also confirmed by X-ray Photoelectron Spectroscopy (XPS). Deconvolution of NEXAFS spectra revealed greater oxidation oil the surfaces of BC particles with little penetration into the core of the particles. The similar C mineralization between different BC-rich soils regardless of soil texture underpins the importance of chemical recalcitrance for the stability of BC, in contrast to adjacent soils which showed the highest mineralization in the sandiest soil. However, the BC-rich Anthrosols had higher proportions (72-90%) of C in the more stable organo-mineral fraction than BC-poor adjacent soils (2-70%), Suggesting some degree of physical stabilization. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Large-scale soy agriculture in the southern Brazilian Amazon now rivals deforestation for pasture as the region`s predominant form of land use change. Such landscape-level change can have substantial consequences for local and regional hydrology, but these effects remain relatively unstudied in this ecologically and economically important region. We examined how the conversion to soy agriculture influences water balances and stormflows using stream discharge (water yields) and the timing of discharge (stream hydrographs) in small (2.5-13.5 km2) forested and soy headwater watersheds in the Upper Xingu Watershed in the state of Mato Grosso, Brazil. We monitored water yield for 1 year in three forested and four soy watersheds. Mean daily water yields were approximately four times higher in soy than forested watersheds, and soy watersheds showed greater seasonal variability in discharge. The contribution of stormflows to annual streamflow in all streams was low (< 13% of annual streamflow), and the contribution of stormflow to streamflow did not differ between land uses. If the increases in water yield observed in this study are typical, landscape-scale conversion to soy substantially alters water-balance, potentially altering the regional hydrology over large areas of the southern Amazon.
Resumo:
Agricultural management practices that promote net carbon (C) accumulation in the soil have been considered as an important potential mitigation option to combat global warming. The change in the sugarcane harvesting system, to one which incorporates C into the soil from crop residues, is the focus of this work. The main objective was to assess and discuss the changes in soil organic C stocks caused by the conversion of burnt to unburnt sugarcane harvesting systems in Brazil, when considering the main soils and climates associated with this crop. For this purpose, a dataset was obtained from a literature review of soils under sugarcane in Brazil. Although not necessarily from experimental studies, only paired comparisons were examined, and for each site the dominant soil type, topography and climate were similar. The results show a mean annual C accumulation rate of 1.5 Mg ha-1 year-1 for the surface to 30-cm depth (0.73 and 2.04 Mg ha-1 year-1 for sandy and clay soils, respectively) caused by the conversion from a burnt to an unburnt sugarcane harvesting system. The findings suggest that soil should be included in future studies related to life cycle assessment and C footprint of Brazilian sugarcane ethanol.
Resumo:
The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.
Resumo:
Lignin phenols were measured in the sediments of Sepitiba Bay, Rio de Janeiro, Brazil and in bedload sediments and suspended sediments of the four major fluvial inputs to the bay: Sao Francisco and Guandu Channels and the Guarda and Cacao Rivers. Fluvial suspended lignin yields (Sigma 8 3.5-14.6 mgC 10 g dw(-1)) vary little between the wet and dry seasons and are poorly correlated with fluvial chlorophyll concentrations (0.8-50.2 mu gC L(-1)). Despite current land use practices that favor grassland agriculture or industrial uses, fluvial lignin compositions are dominated by a degraded leaf-sourced material. The exception is the Guarda River, which has a slight influence from grasses. The Lignin Phenol Vegetation Index, coupled with acid/aldehyde and 3.5 Db/V ratios, indicate that degraded leaf-derived phenols are also the primary preserved lignin component in the bay. The presence of fringe Typha sp. and Spartina sp. grass beds surrounding portions of the Bay are not reflected in the lignin signature. Instead, lignin entering the bay appears to reflect the erosion of soils containing a degraded signature from the former Atlantic rain forest that once dominated the watershed, instead of containing a significant signature derived from current agricultural uses. A three-component mixing model using the LPVI, atomic N:C ratios, and stable carbon isotopes (which range between -26.8 and -21.8 parts per thousand) supports the hypothesis that fluvial inputs to the bay are dominated by planktonic matter (78% of the input), with lignin dominated by leaf (14% of the input) over grass (6%). Sediments are composed of a roughly 50-50 mixture of autochthonous material and terrigenous material, with lignin being primarily sourced from leaf. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The Cerrado and Amazon regions of Brazil are probably the largest agricultural frontier of the world, and Could be a sink or source for C depending on the net effect of land use change and subsequent management on soil organic C pools. We evaluated the effects of agricultural management systems on soil organic C (SOC) stocks in the Brazilian states of Rondonia and Mato Grosso, and derived regional specific factors for soil C stock change associated with different management systems. We used 50 observations (data points) in this study, including 42 dealing with annual cropping practices and 8 dealing with perennial cropping, and analyzed the data in linear mixed-effect models. No tillage (NT) systems in Cerrado areas increased SOC Storage by 1.08 +/- 0.06 relative to SOC stocks under native conditions, while SOC storage increased by a modest factor of 1.01 +/- 0.17 in Cerradao and Amazon Forest conditions. Full tillage (FT) had negative effect on SOC storage relative to NT, decreasing SOC stocks by a factor of 0.94 +/- 0.04. but did not significantly reduce SOC stocks relative to native levels when adopted in the Cerrado region. Perennial cropping had a minimal impact on SOC stocks, estimated at a factor Value of 0.98 +/- 0.14, suggesting these systems maintain about 98% of the SOC stock found under native vegetation. The results Suggest that NT adoption may be increasing SOC with land use change from native vegetation to cropland management in the Cerrado region of Brazil. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
No-till (NT) adoption is an essential tool for development of sustainable agricultural systems, and how NT affects the soil organic C (SOC) dynamics is a key component of these systems. The effect of a plow tillage (PT) and NT age chronosequence on SOC concentration and interactions with soil fertility were assessed in a variable charge Oxisol, located in the South Center quadrant of Parana State, Brazil (50 degrees 23`W and 24 degrees 36`S). The chronosequence consisted of the following six sites: (i) native field (NF); (ii) PT of the native field (PNF-1) involving conversion of natural vegetation to cropland; (iii) NT for 10 years (NT-10); (iv) NT for 20 years (NT-20); (v) NT for 22 years (NT-22); and (vi) conventional tillage for 22 years (CT-22) involving PT with one disking after summer harvest and one after winter harvest to 20 cm depth plus two harrow disking. Soil samples were collected from five depths (0-2.5; 2.5-5; 5-10; 10-20; and 20-40 cm) and SOC, pH (in H(2)O and KCl), Delta pH, potential acidity, exchangeable bases, and cation exchangeable capacity (CEC) were measured. An increase in SOC concentration positively affected the pH, the negative charge and the CEC and negatively impacted potential acidity. Regression analyses indicated a close relationship between the SOC concentration and other parameters measured in this study. The regression fitted between SOC concentration and CEC showed a close relationship. There was an increase in negative charge and CEC with increase in SOC concentration: CEC increased by 0.37 cmol(c) kg(-1) for every g of C kg(-1) soil. The ratio of ECEC:SOC was 0.23 cmol(c) kg(-1) for NF and increased to 0.49 cmol(c) kg(-1) for NT-22. The rates of P and K for 0-10 cm depth increased by 9.66 kg ha(-1) yr(-1) and 17.93 kg ha(-1) yr(-1), respectively, with NF as a base line. The data presented support the conclusion that long-term NT is a useful strategy for improving fertility of soils with variable charge. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Studies on keratinolytic microorganisms have been mainly related to their biotechnological applications and association with animal pathologies. However, these organisms have an ecological relevance to recycling keratinous residues in nature. This work aimed to select and identify new culturable feather-degrading bacteria isolated from soils of Brazilian Amazon forest and Atlantic forest. Bacteria that were isolated from temperate soils and bacteria from Amazonian basin soil were tested for their capability to grow on feather meal agar (FMA). Proteolytic bacteria were tested for feather degradation and were further identified according to their morphological and biochemical characteristics. Also, molecular identification based on 165 rDNA gene sequencing was carried out. A total of 24 proteolytic and 20 feather-degrading isolates were selected; Most of the isolates were from the Bacillus genus (division Firmicutes), but one Aeromonas, two Serratia (gamma-Proteobacteria), and one Chryseobacterium (Cytophaga-Flavobacterium group). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Northeastern Brazil represents a strategic area in terms of Quaternary records of environmental changes in South America due to its distinct semi-arid climate in near equatorial latitudes. In this study, carbon isotope and charcoal distribution records in soils are used to characterize vegetation dynamics, forest fires and their relation to climate change since the Late Pleistocene in the States of Ceara, Piaui and Paraiba, Northeastern Brazil. At the Ceara site, the carbon isotope record showed an enrichment trend from -24%(o) to 19%(o) during the early-mid Holocene, indicating an opening of vegetation and expansion of savanna vegetation (C(4) plants) during this period. A trend toward more depleted delta(13)C values (similar to-32%.) in the late Holocene indicates an expansion of forest vegetation (C(3) plants). A similar trend is observed at the Piaui and Paraiba sites where values of similar to-24%0 are associated with open forest vegetation during the late Pleistocene. In the early-mid Holocene, delta(13)C values of up to -18.0%(o), suggest the expansion of C4 plants. Based on the carbon isotope data, it is postulated that from similar to 18,000 cal yr B.P. to similar to 11,800 cal yr B.P.-similar to 10,000 cal yr B.P. arboreal vegetation was dominant in northeastern Brazil and is associated with humid climates. The savanna expanded from similar to 10,000 cal yr B.P. to similar to 4500-3200 cal yr B.P. due to a less humid/drier climatic phase, also supported by the significant presence of fires (charcoal fragments in the soil). From approximately 3200-2000 cal yr B.P. to the present, carbon isotope records suggest forest expansion and a more humid phase. These results form part of a regional pattern since they are in agreement with paleovegetation records obtained in regions of Maranhao, northeastern Brazil and in the Amazon and Rondonia States, northern Brazil. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Cadmium is known to be a toxic agent that accumulates in the living organisms and present high toxicity potential over lifetime. Efforts towards the development of methods for microanalysis of environmental samples, including the determination of this element by graphite furnace atomic absorption spectrometry (GFAAS). inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma-mass spectrometry (ICP-MS) techniques, have been increasing. Laser induced breakdown spectroscopy (UBS) is an emerging technique dedicated to microanalysis and there is a lack of information dealing with the determination of cadmium. The aim of this work is to demonstrate the feasibility of LIBS for cadmium detection in soils. The experimental setup was designed using a laser Q-switched (Nd:YAG, 10 Hz, lambda = 1064 nm) and the emission signals were collimated by lenses into an optical fiber Coupled to a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Samples were cryogenically ground and thereafter pelletized before LIBS analysis. Best results were achieved by exploring a test portion (i.e. sampling spots) with larger surface area, which contributes to diminish the uncertainty due to element specific microheterogeneity. Calibration curves for cadmium determination were achieved using certified reference materials. The metrological figures of merit indicate that LIBS can be recommended for screening of cadmium contamination in soils. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The agricultural supplies used in the organic system to control pests and diseases as well as to fertilize soil are claimed to be beneficial to plants and innocuous to human health and to the environment. The chemical composition of six agricultural supplies commonly used in the organic tomato culture, was evaluated by instrumental neutron activation analysis (INAA). Results were compared to the maximum limits established by the Environment Control Agency of the Sao Paulo State (CETESB) and the Guidelines for Organic Quality Standard of Instituto Biodinamico (IBD). Concentrations above reference values were found for Co, Cr and Zn in compost, Cr and Zn in cattle manure and Zn in rice bran.
Resumo:
A method for isotopic determination of silicon by mass spectrometry in plants and soils labeled with Si-30 is reported. The development of this method is for use with studies involving the physiological process of absorption, transport, and redistribution of Si in the soil-plant system by use of the stable isotope Si-30 as a tracer. The procedure leads to SiF4 formation, and the isotopic determination of Si was based on the measurements of the (SiF3+)-Si-28, (SiF3+)-Si-29, and (SiF3+)-Si-30 signals. Relative standard deviation of Si-30 abundance measurements (n = 6) were lower than 0.1%, and the detection limit was 0.5 mg Si (dry mass).
Resumo:
The study of soils is very important in the geological and geological engineering researches. A study of ten samples of soils was carried out by thermal analysis, and X-Ray Fluorescence Spectrometry to understand soil evolution in Angra dos Reis region, Rio de Janeiro State, Brazil. The sample collection sites were chosen based on geological characteristics, the soil layer thickness, the soil composition pattern, and whether or not it was moved either by erosion or by gravitational shifts. Because of the humid tropical climatic condition, natural soils tend to show great thickness of weathered mantles with formation of saprolites and saprolite soils. Kaolinite is an important secondary mineral which can be formed from many different minerals, like k-mica and k-feldspar and can be weathered to gibbsite. The results from TG/DTG and DTA indicated which soils had more weathering, and the same results were obtained by XRF, when silica/aluminum ratios from samples are compared with thermal analysis results.
Resumo:
Arsenic (As) is a semimetallic element that is notorious for its toxicity and carcinogenicity. Arsenic can be removed by some ferns. The objectives of this study were to investigate the ability of Pteris vittata L. (Pteridophyta) and Phlebodium aureum (L.) J. Sm. (Polypodiaceae) to absorb inorganic As, in the form of arsenate and arsenite. The removal of As by ferns was observed at varying anion concentrations and As solubility in the absorbing plant. Results obtained with ferns on As-contaminated soil indicate that redox potential and iron (Fe) presence affected the solubility of As and the absorption capacity of ferns. Upon reduction to -200mV, the soluble As content increased to 400mV. The results indicate that Fe oxides and the influence of redox potential strongly affect As absorption. Under nonreducing conditions, Phlebodium aureum did not remove As as well as Pteris vittata. Under more reducing conditions (-200 to 0mV) and under similar soil conditions, the results show that the both ferns remove As.