30 resultados para Adaptive neuro-fuzzy inference system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a controller design method for fuzzy dynamic systems based on piecewise Lyapunov functions with constraints on the closed-loop pole location. The main idea is to use switched controllers to locate the poles of the system to obtain a satisfactory transient response. It is shown that the global fuzzy system satisfies the requirements for the design and that the control law can be obtained by solving a set of linear matrix inequalities, which can be efficiently solved with commercially available softwares. An example is given to illustrate the application of the proposed method. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite modern weed control practices, weeds continue to be a threat to agricultural production. Considering the variability of weeds, a classification methodology for the risk of infestation in agricultural zones using fuzzy logic is proposed. The inputs for the classification are attributes extracted from estimated maps for weed seed production and weed coverage using kriging and map analysis and from the percentage of surface infested by grass weeds, in order to account for the presence of weed species with a high rate of development and proliferation. The output for the classification predicts the risk of infestation of regions of the field for the next crop. The risk classification methodology described in this paper integrates analysis techniques which may help to reduce costs and improve weed control practices. Results for the risk classification of the infestation in a maize crop field are presented. To illustrate the effectiveness of the proposed system, the risk of infestation over the entire field is checked against the yield loss map estimated by kriging and also with the average yield loss estimated from a hyperbolic model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel adaptive control scheme. with improved convergence rate, for the equalization of harmonic disturbances such as engine noise. First, modifications for improving convergence speed of the standard filtered-X LMS control are described. Equalization capabilities are then implemented, allowing the independent tuning of harmonics. Eventually, by providing the desired order vs. engine speed profiles, the pursued sound quality attributes can be achieved. The proposed control scheme is first demonstrated with a simple secondary path model and, then, experimentally validated with the aid of a vehicle mockup which is excited with engine noise. The engine excitation is provided by a real-time sound quality equivalent engine simulator. Stationary and transient engine excitations are used to assess the control performance. The results reveal that the proposed controller is capable of large order-level reductions (up to 30 dB) for stationary excitation, which allows a comfortable margin for equalization. The same holds for slow run-ups ( > 15s) thanks to the improved convergence rate. This margin, however, gets narrower with shorter run-ups (<= 10s). (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to formulate and investigate the application of various nonlinear H(infinity) control methods to a fiee-floating space manipulator subject to parametric uncertainties and external disturbances. From a tutorial perspective, a model-based approach and adaptive procedures based on linear parametrization, neural networks and fuzzy systems are covered by this work. A comparative study is conducted based on experimental implementations performed with an actual underactuated fixed-base planar manipulator which is, following the DEM concept, dynamically equivalent to a free-floating space manipulator. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents results of research into the use of the Bellman-Zadeh approach to decision making in a fuzzy environment for solving multicriteria power engineering problems. The application of the approach conforms to the principle of guaranteed result and provides constructive lines in computationally effective obtaining harmonious solutions on the basis of solving associated maxmin problems. The presented results are universally applicable and are already being used to solve diverse classes of power engineering problems. It is illustrated by considering problems of power and energy shortage allocation, power system operation, optimization of network configuration in distribution systems, and energetically effective voltage control in distribution systems. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We preserit a computational procedure to control art experimental chaotic system by applying the occasional proportional feedback (OPF) method. The method implementation uses the fuzzy theory to relate the variable correction to the necessary adjustment in the control parameter. As an application We control the chaotic attractors of the Chua circuit. We present file developed circuits and algorithms to implement this control in real time. To simplify the used procedure, we use it low resolution analog to digital converter compensated for a lowpass filter that facilitates similar applications to control other systems. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an Adaptive Maximum Entropy (AME) approach for modeling biological species. The Maximum Entropy algorithm (MaxEnt) is one of the most used methods in modeling biological species geographical distribution. The approach presented here is an alternative to the classical algorithm. Instead of using the same set features in the training, the AME approach tries to insert or to remove a single feature at each iteration. The aim is to reach the convergence faster without affect the performance of the generated models. The preliminary experiments were well performed. They showed an increasing on performance both in accuracy and in execution time. Comparisons with other algorithms are beyond the scope of this paper. Some important researches are proposed as future works.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the design and implementation of an embedded soft sensor, i. e., a generic and autonomous hardware module, which can be applied to many complex plants, wherein a certain variable cannot be directly measured. It is implemented based on a fuzzy identification algorithm called ""Limited Rules"", employed to model continuous nonlinear processes. The fuzzy model has a Takagi-Sugeno-Kang structure and the premise parameters are defined based on the Fuzzy C-Means (FCM) clustering algorithm. The firmware contains the soft sensor and it runs online, estimating the target variable from other available variables. Tests have been performed using a simulated pH neutralization plant. The results of the embedded soft sensor have been considered satisfactory. A complete embedded inferential control system is also presented, including a soft sensor and a PID controller. (c) 2007, ISA. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exercise training has an important role in the prevention and treatment of hypertension, but its effects on the early metabolic and hemodynamic abnormalities observed in normotensive offspring of hypertensive parents (FH+) have not been studied. We compared high-intensity interval (aerobic interval training, AIT) and moderate-intensity continuous exercise training (CMT) with regard to hemodynamic, metabolic and hormonal variables in FH+ subjects. Forty-four healthy FH+ women (25.0+/-4.4 years) randomized to control (ConFH+) or to a three times per week equal-volume AIT (80-90% of VO(2MAX)) or CMT (50-60% of VO(2MAX)) regimen, and 15 healthy women with normotensive parents (ConFH-; 25.3+/-3.1 years) had their hemodynamic, metabolic and hormonal variables analyzed at baseline and after 16 weeks of follow-up. Ambulatorial blood pressure (ABP), glucose and cholesterol levels were similar among all groups, but the FH+ groups showed higher insulin, insulin sensitivity, carotid-femoral pulse wave velocity (PWV), norepinephrine and endothelin-1 (ET-1) levels and lower nitrite/ nitrate (NOx) levels than ConFH- subjects. AIT and CMT were equally effective in improving ABP (P<0.05), insulin and insulin sensitivity (P<0.001); however, AIT was superior in improving cardiorespiratory fitness (15 vs. 8%; P<0.05), PWV (P<0.01), and BP, norepinephrine, ET-1 and NOx response to exercise (P<0.05). Exercise intensity was an important factor in improving cardiorespiratory fitness and reversing hemodynamic, metabolic and hormonal alterations involved in the pathophysiology of hypertension. These findings may have important implications for the exercise training programs used for the prevention of inherited hypertensive disorder. Hypertension Research (2010) 33, 836-843; doi:10.1038/hr.2010.72; published online 7 May 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nursing diagnoses associated with alterations of urinary elimination require different interventions, Nurses, who are not specialists, require support to diagnose and manage patients with disturbances of urine elimination. The aim of this study was to present a model based on fuzzy logic for differential diagnosis of alterations in urinary elimination, considering nursing diagnosis approved by the North American Nursing Diagnosis Association, 2001-2002. Fuzzy relations and the maximum-minimum composition approach were used to develop the system. The model performance was evaluated with 195 cases from the database of a previous study, resulting in 79.0% of total concordance and 19.5% of partial concordance, when compared with the panel of experts. Total discordance was observed in only three cases (1.5%). The agreement between model and experts was excellent (kappa = 0.98, P < .0001) or substantial (kappa = 0.69, P < .0001) when considering the overestimative accordance (accordance was considered when at least one diagnosis was equal) and the underestimative discordance (discordance was considered when at least one diagnosis was different), respectively. The model herein presented showed good performance and a simple theoretical structure, therefore demanding few computational resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a fuzzy approach to the Reed-Frost model for epidemic spreading taking into account uncertainties in the diagnostic of the infection. The heterogeneities in the infected group is based on the clinical signals of the individuals (symptoms, laboratorial exams, medical findings, etc.), which are incorporated into the dynamic of the epidemic. The infectivity level is time-varying and the classification of the individuals is performed through fuzzy relations. Simulations considering a real problem with data of the viral epidemic in a children daycare are performed and the results are compared with a stochastic Reed-Frost generalization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The traditional methods employed to detect atherosclerotic lesions allow for the identification of lesions; however, they do not provide specific characterization of the lesion`s biochemistry. Currently, Raman spectroscopy techniques are widely used as a characterization method for unknown substances, which makes this technique very important for detecting atherosclerotic lesions. The spectral interpretation is based on the analysis of frequency peaks present in the signal; however, spectra obtained from the same substance can show peaks slightly different and these differences make difficult the creation of an automatic method for spectral signal analysis. This paper presents a signal analysis method based on a clustering technique that allows for the classification of spectra as well as the inference of a diagnosis about the arterial wall condition. The objective is to develop a computational tool that is able to create clusters of spectra according to the arterial wall state and, after data collection, to allow for the classification of a specific spectrum into its correct cluster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the current study was to investigate the apoptosis of neurons, astrocytes and immune cells from human patients that were infected with rabies virus by vampire bats bite. Apoptotic neurons were identified by their morphology and immune cells were identified using double immunostaining. There were very few apoptotic neurons present in infected tissue samples, but there was an increase of apoptotic infiltrating CD4+ and TCD8+ adaptive immune cells in the rabies infected tissue. No apoptosis was present in NK, macrophage and astrocytes. The dissemination of the human rabies virus within an infected host may be mediated by viral escape of the virus from an infected cell and may involve an anti-apoptotic mechanism, which does not kill the neuron or pro-apoptosis of TCD4+ and TCD8+ lymphocytes and which allows for increased proliferation of the virus within the CNS by attenuation of the adaptive immune response. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For many learning tasks the duration of the data collection can be greater than the time scale for changes of the underlying data distribution. The question we ask is how to include the information that data are aging. Ad hoc methods to achieve this include the use of validity windows that prevent the learning machine from making inferences based on old data. This introduces the problem of how to define the size of validity windows. In this brief, a new adaptive Bayesian inspired algorithm is presented for learning drifting concepts. It uses the analogy of validity windows in an adaptive Bayesian way to incorporate changes in the data distribution over time. We apply a theoretical approach based on information geometry to the classification problem and measure its performance in simulations. The uncertainty about the appropriate size of the memory windows is dealt with in a Bayesian manner by integrating over the distribution of the adaptive window size. Thus, the posterior distribution of the weights may develop algebraic tails. The learning algorithm results from tracking the mean and variance of the posterior distribution of the weights. It was found that the algebraic tails of this posterior distribution give the learning algorithm the ability to cope with an evolving environment by permitting the escape from local traps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an efficient numerical methodology for the 31) computation of incompressible multi-phase flows described by conservative phase-field models We focus here on the case of density matched fluids with different viscosity (Model H) The numerical method employs adaptive mesh refinements (AMR) in concert with an efficient semi-implicit time discretization strategy and a linear, multi-level multigrid to relax high order stability constraints and to capture the flow`s disparate scales at optimal cost. Only five linear solvers are needed per time-step. Moreover, all the adaptive methodology is constructed from scratch to allow a systematic investigation of the key aspects of AMR in a conservative, phase-field setting. We validate the method and demonstrate its capabilities and efficacy with important examples of drop deformation, Kelvin-Helmholtz instability, and flow-induced drop coalescence (C) 2010 Elsevier Inc. All rights reserved