265 resultados para ACE inhibitory activity
Resumo:
Objectives: We tested whether angiotensin converting enzyme (ACE) and phosphorylation of Ser(1270) are involved in shear-stress (SS)-induced downregulation of the enzyme. Methods and Results: Western blotting analysis showed that SS (18 h, 15 dyn/cm(2)) decreases ACE expression and phosphorylation as well as p-JNK inhibition in human primary endothelial cells (EC). CHO cells expressing wild-type ACE (wt-ACE) also displayed SS-induced decrease in ACE and p-JNK. Moreover, SS decreased ACE promoter activity in wt-ACE, but had no effect in wild type CHO or CHO expressing ACE without either the extra-or the intracellular domains, and decreased less in CHO expressing a mutated ACE at Ser(1270) compared to wt-ACE (13 vs. 40%, respectively). The JNK inhibitor (SP600125, 18 h), in absence of SS, also decreased ACE promoter activity in wt-ACE. Finally, SS-induced inhibition of ACE expression and phosphorylation in EC was counteracted by simultaneous exposure to an ACE inhibitor. Conclusions: ACE displays a key role on its own downregulation in response to SS. This response requires both the extra- and the intracellular domains and ACE Ser(1270), consistent with the idea that the extracellular domain behaves as a mechanosensor while the cytoplasmic domain elicits the downstream intracellular signaling by phosphorylation on Ser(1270).
Resumo:
Lacchini S, Heimann AS, Evangelista FS, Cardoso L, Silva GJ, Krieger JE. Cuff-induced vascular intima thickening is influenced by titration of the Ace gene in mice. Physiol Genomics 37: 225-230, 2009. First published March 3, 2009; doi:10.1152/physiolgenomics.90288.2008.-We tested the hypothesis that small changes in angiotensin I-converting enzyme (ACE) expression can alter the vascular response to injury. Male mice containing one, two, three, and four copies of the Ace gene with no detectable vascular abnormality or changes in blood pressure were submitted to cuff-induced femoral artery injury. Femoral thickening was higher in 3- and 4-copy mice (42.4 +/- 4.3% and 45.7 +/- 6.5%, respectively) compared with 1- and 2-copy mice (8.3 +/- 1.3% and 8.5 +/- 0.9%, respectively). Femoral ACE levels from control and injured vessels were assessed in 1- and 3-copy Ace mice, which represent the extremes of the observed response. ACE vascular activity was higher in 3- vs. 1-copy Ace mice (2.4-fold, P < 0.05) in the control uninjured vessel. Upon injury, ACE activity significantly increased in both groups [2.41-fold and 2.14-fold (P < 0.05) for 1- and 3-copy groups, respectively] but reached higher levels in 3- vs. 1-copy Ace mice (P < 0.05). Pharmacological interventions were then used as a counterproof and to indirectly assess the role of angiotensin II (ANG II) on this response. Interestingly, ACE inhibition (enalapril) and ANG II AT(1) receptor blocker (losartan) reduced intima thickening in 3-copy mice to 1-copy mouse values (P < 0.05) while ANG II treatment significantly increased intima thickening in 1-copy mice to 3-copy mouse levels (P < 0.05). Together, these data indicate that small physiologically relevant changes in ACE, not associated with basal vascular abnormalities or blood pressure levels, do influence the magnitude of cuff-induced neointima thickening in mice.
Resumo:
Plants synthesize a variety of molecules to defend themselves against an attack by insects. Talisin is a reserve protein from Talisia esculenta seeds, the first to be characterized from the family Sapindaceae. In this study, the insecticidal activity of Talisin was tested by incorporating the reserve protein into an artificial diet fed to the velvetbean caterpillar Anticarsia gemmatalis, the major pest of soybean crops in Brazil. At 1.5% (w/w) of the dietary protein, Talisin affected larval growth, pupal weight, development and mortality, adult fertility and longevity, and produced malformations in pupae and adult insects. Talisin inhibited the trypsin-like activity of larval midgut homogenates. The trypsin activity in Talisin-fed larvae was sensitive to Talisin, indicating that no novel protease-resistant to Talisin was induced in Talisin-fed larvae. Affinity chromatography showed that Talisin bound to midgut proteinases of the insect A. gemmatalis, but was resistant to enzymatic digestion by these larval proteinases. The transformation of genes coding for this reserve protein could be useful for developing insect resistant crops. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Red currants (Ribes rubrum L.), black currants (Ribes nigrum L.), red and green gooseberries (Ribes uva-crispa) were evaluated for the total phenolics, antioxidant capacity based on 2, 2-diphenyl-1-picrylhydrazyl radical scavenging assay and functionality such as in vitro inhibition of alpha-amylase, alpha-glucosidase and angiotensin I-converting enzyme (ACE) relevant for potential management of hyperglycemia and hypertension. The total phenolics content ranged from 3.2 (green gooseberries) to 13.5 (black currants) mg/g fruit fresh weight. No correlation was found between total phenolics and antioxidant activity. The major phenolic compounds were quercetin derivatives (black currants and green gooseberries) and chlorogenic acid (red currants and red gooseberries). Red currants had the highest alpha-glucosidase, alpha-amylase and ACE inhibitory activities. Therefore red currants could be good dietary sources with potential antidiabetes and antihypertension functionality to compliment overall dietary management of early stages of type 2 diabetes.
Resumo:
Leaves from four different Ginkgo biloba L. trees (1 and 2 - females; 3 and 4 - males), grown at the same conditions, were collected during a period of 5 months (from June to October, 2007). Water and 12% ethanol extracts were analyzed for total phenolics content, antioxidant activity, phenolic profile, and the potential in vitro inhibitory effects on alpha-amylase, alpha-glucosidase, and Angiotensin I-Converting Enzyme (ACE) enzymes related to the management of diabetes and hypertension. The results indicated a significant difference among the trees in all functional benefits evaluated in the leaf extracts and also found important seasonal variation related to the same functional parameters. In general, the aqueous extracts had higher total phenolic content than the ethanolic extracts. Also, no correlation was found between total phenolics and antioxidant activity. In relation to the ACE inhibition, only ethanolic extracts had inhibitory activity. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Aiming at contributing with the search for neuroactive substances from natural sources, we report for the first time antinociceptive and anticonvulsant effects of some Lychnophora species. We verify the protective effects of polar extracts (600 mg/kg, intraperitoneally), and methanolic fractions of L. staavioides and L. rupestris (100 mg/kg, intraperitoneally) in pentylenetetrazole-induced seizures on mice. Previously, a screening was accomplished, evaluating the antinociceptive central activity (hot plate test), with different extracts of L. rupestris, L. staavioides and L. diamantinana. It was possible to select the possible extracts of Lychnophora with central nervous system activity. Some of the active extracts were submitted to fractionation and purification process and the methanolic fractions of L. rupestris (stem) and L. staavioides (stem), with anticonvulsant properties (100 mg/kg, intraperitoneally), yielded 4,5-di-O-[E]-caffeoylquinic acid. This substance was injected intraperitoneally in mice and showed anticonvulsant effect against pentylenetetrazole-induced seizures at doses of 25 and 50 mg/kg. It has often been shown that seizures induced by pentylenetetrazole are involved in inhibition and/or attenuation of GABAergic neurotransmission. However, other systems of the central nervous system such as adenosinergic and glutamatergic could be involved in the caffeoylquinic acid effects. Further studies should be conducted to verify that the target receptor could be participating in this anticonvulsant property. Although other investigations have reported a series of biological activities from Lychnophora species, this is the first report of central analgesic and anticonvulsant activity in species of this genus.
Resumo:
Considering that antioxidant flavonols have been reported to be beneficial to human health, but that their low water solubility and bioavailability limit their administration through systemic route, the development of suitable flavonol-carriers is of great importance for clinical therapeutics. The aim of this study was to prepare liposomes containing flavonols or not and evaluate their antioxidant activity. Vesicles were obtained by ethanol injection method and characterized in terms of entrapment efficiency, size and zeta potential. Inhibitory activity of liposomal flavonols on reactive oxygen species generation was assessed in vitro using luminol--H(2)O(2)--horseradish peroxidase technique. Antioxidant activity of liposomal flavonols is dependent on concentration and chemical structure of active compound. Quercetin and myricetin are the most active flavonols (IC(50) == 0.6--0.9 mu A mu mol/L), followed by kaempferol (IC(50) == 3.0--4.5 mu A mu mol/L) and galangin (IC(50) == 4.0--7.0 mu A mu mol/L). Our results suggest that antioxidant-loaded liposomes may be promising tools for therapy of diseases where oxidative stress is involved.
Resumo:
Chagas` disease is an illness that affects millions of people in Central and South America, The search for both a prophylactic drug to be added to human blood as well as a safe and reliable therapeutic drug are greatly needed to control such disease. Herein, we report the trypanocidal activity of 15 crude extracts and 14 Compounds (limonoids and triterpenes) as well as the isolation of 25 known compounds (6 limonoids, 12 triterpenes, 1 sesquiterpene, 5 steroids, and 1 flavonoid) from Cedrela fissilis. The present study shows that this plant is a Promising Source of active compounds for the control of Chagas` disease. The inhibitory activity found for odoratol indicates that it is potentially useful as an alternative for the chemoprophylactic gentian violet.
Resumo:
Suramin is a polysulphonated napthylurea antiprotozoal and anthelminitic drug, which also presents inhibitory activity against a broad range of enzymes. Here we evaluate the effect of suramin on the hydrolytic and biological activities of secreted human group IIA phospholipase A(2) (hsPLA(2)GIIA). The hsPLA(2)GIIA was expressed in E. coli, and refolded from inclusion bodies. The hydrolytic activity of the recombinant enzyme was measured using mixed dioleoylphosphatidylcholine/dioleoylphosphatidylglycerol (DOPC/DOPG) liposomes. The activation of macrophage cell line RAW 264.7 by hsPLA(2) GIIA was monitored by NO release, and bactericidal activity against Micrococcus luteus was evaluated by colony counting and by flow cytometry using the fluorescent probe Sytox Green. The hydrolytic activity of the hsPLA(2) GIIA was inhibited by a concentration of 100 nM suramin and the activation of macrophages by hsPLA(2) GIIA was abolished at protein/suramin molar ratios where the hydrolytic activity of the enzyme was inhibited. In contrast, both the bactericidal activity of hsPLA(2) GIIA against Micrococcus luteus and permeabilization of the bacterial inner membrane were unaffected by suramin concentrations up to 50 mu M. These results demonstrate that suramin selectively inhibits the activity of the hsPLA(2) GIIA against macrophages, whilst leaving the anti-bacterial function unchanged.
Resumo:
The in vitro inhibitory activity of crude EtOH/H(2)O extracts from the leaves and stems of Rosmarinus officinalis L. was evaluated against the following microorganisms responsible for initiating dental caries: Streptococcus mutans, salivarius, S. sobrinus, S. mitts 5 sanguinis, and Enterococcus faecalis. Minimum inhibitory concentrations (MIC) were determined with the broth microdilution method. The bioassay-guided fractionation of the leaf extract, which displayed the higher antibacterial activity than the stem extract, led to the identification of carnosic acid (2) and carnosol (3) as the major compounds in the fraction displaying the highest activity, as identified by HPLC analysis. Rosmarinic acid (1), detected in another fraction, did not display any activity against the selected microorganisms. HPLC Analysis revealed the presence of low amounts of ursolic acid (4) and oleanolic acid (5) in the obtained fractions. The results suggest that the antimicrobial activity of the extract from the leaves of R. officinalis may be ascribed mainly to the action of 2 and 3.
Resumo:
The practice of regular exercise is indicated to prevent some motility disturbances in the gastrointestinal tract, such as constipation, during aging. The motility alterations are intimately linked with its innervations. The goal of this study is to determine whether a program of exercise (running on the treadmill), during 6 months, has effects in the myenteric neurons (NADH- and NADPH-diaphorase stained neurons) in the colon of rats during aging. Male Wister rats 6 months (adult) and 12 months (middle-aged) old were divided into 3 different groups: AS (adult sedentary), MS (middle-aged sedentary) and MT (middle-aged submitted to physical activity). The aging did not cause a decline significant (p > 0.05) of the number of NADH-diaphorase stained neurons in sedentary rats (AS vs. MS group). In contrast, a decline of 3 1% was observed to NADPH-diaphorase stained neurons. Thus, animals that underwent physical activity (AS vs. MT group) rescued neurons from degeneration caused by aging (total number, density and profile of neurons did not change with age - NADH-diaphorase method). On the other hand, physical activity augmented the decline of NADPH-diaphorase positive neurons (total number, density and profile of neurons decreased). Collectively, the results show that exercise inhibits age-related decline of myenteric neurons however, exercise augments the decline of neurons with inhibitory activity (nitric oxide) in the colon of the rats. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Arthropods display different mechanisms to protect themselves against infections, among which antimicrobial peptides (AMPs) play an important role, acting directly against invader pathogens. We have detected several factors with inhibitory activity against Candida albicans and Micrococcus luteus on the surface and in homogenate of eggs of the tick Rhipicephalus (Boophilus) microplus. One of the anti-M. luteus factors of the egg homogenate was isolated to homogeneity. Analysis by electrospray mass spectrometry (ESI-MS) revealed that it corresponds to microplusin, an AMP previously isolated from the cell-free hemolymph of X (B.) microplus. Reverse transcription (RT) quantitative polymerase chain reactions (qPCR) showed that the levels of microplusin mRNA gradually increase along ovary development, reaching an impressive highest value three days after the adult females have dropped from the calf and start oviposition. Interestingly, the level of microplusin mRNA is very low in recently laid eggs. An enhance of microplusin gene expression in eggs is observed only nine days after the onset of oviposition, achieving the highest level just before the larva hatching, when the level of expression decreases once again. Fluorescence microscopy analysis using an anti-microplusin serum revealed that microplusin is present among yolk granules of oocytes as well as in the connecting tube of ovaries. These results, together to our previous data. suggest that microplusin may be involved not only in protection of adult female hemocele, but also in protection of the female reproductive tract and embryos, what points this AMP as a considerable target for development of new methods to control R. (B.) microplus as well as the vector-borne pathogens. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The development of more efficient anti-tuberculosis drugs is of interest. Three oxovanadium(IV) and three cis-dioxovanadium(V) complexes with thiosemicarbazone derivatives bearing moieties with different lipophilicity have been prepared and had their inhibitory activity against Mycobacterium tuberculosis H(37)Rv ATCC 27294 evaluated. The analytical methods used by the complexes` characterization included IR, EPR, (1)H, (13)C and (51)V NMR spectroscopies, elemental analysis, cyclic voltammetry, magnetic susceptibility measurement and single crystal X-ray diffractometry. [VO(acac)(aptsc)], [VO(acac)(apmtsc)] and [VO(acac)(apptsc)] (acac = acetylacetonate; Haptsc = 2-acetylpyridinethiosemicarbazone; Hapmtsc = 2-acetylpyridine-N(4)-methyl-thiosemicarbazone and Happtsc = 2-acetylpyridine-N(4)-phenyl-thiosemicarbazone) are paramagnetic and their EPR spectra are consistent with the monoanionic N,N,S-tridentate coordination of the thiosemicarbazone ligands, resulting in octahedral structures of rhombic symmetry and with the oxidation state +IV for the vanadium atom. As result of oxidation of the vanadium(IV) complexes above, the diamagnetic cis-dioxovanadium(V) complexes [VO(2)(aptsc)[, [VO(2)(apmtsc)[ and [VO(2)(apptsc)] are formed. Their (1)H, (13)C and (51)V NMR spectra were acquired and support a distorted square pyramidal geometry for them, in accord with the solid state X-ray structures determined for [VO(2)(aptsc)] and [VO(2)(apmtsc)]. In general, the vanadium compounds show comparable or larger anti-M. tuberculosis activities than the free thiosemicarbazone ligands, with MIC values within 62.5-1.56 (mu g/mL). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In order to extend previous SAR and QSAR studies, 3D-QSAR analysis has been performed using CoMFA and CoMSIA approaches applied to a set of 39 alpha-(N)-heterocyclic carboxaldehydes thiosemicarbazones with their inhibitory activity values (IC(50)) evaluated against ribonucleotide reductase (RNR) of H.Ep.-2 cells (human epidermoid carcinoma), taken from selected literature. Both rigid and field alignment methods, taking the unsubstituted 2-formylpyridine thiosemicarbazone in its syn conformation as template, have been used to generate multiple predictive CoMFA and CoMSIA models derived from training sets and validated with the corresponding test sets. Acceptable predictive correlation coefficients (Q(cv)(2) from 0.360 to 0.609 for CoMFA and Q(cv)(2) from 0.394 to 0.580 for CoMSIA models) with high fitted correlation coefficients (r` from 0.881 to 0.981 for CoMFA and r(2) from 0.938 to 0.993 for CoMSIA models) and low standard errors (s from 0.135 to 0.383 for CoMFA and s from 0.098 to 0.240 for CoMSIA models) were obtained. More precise CoMFA and CoMSIA models have been derived considering the subset of thiosemicarbazones (TSC) substituted only at 5-position of the pyridine ring (n=22). Reasonable predictive correlation coefficients (Q(cv)(2) from 0.486 to 0.683 for CoMFA and Q(cv)(2) from 0.565 to 0.791 for CoMSIA models) with high fitted correlation coefficients (r(2) from 0.896 to 0.997 for CoMFA and r(2) from 0.991 to 0.998 for CoMSIA models) and very low standard errors (s from 0.040 to 0.179 for CoMFA and s from 0.029 to 0.068 for CoMSIA models) were obtained. The stability of each CoMFA and CoMSIA models was further assessed by performing bootstrapping analysis. For the two sets the generated CoMSIA models showed, in general, better statistics than the corresponding CoMFA models. The analysis of CoMFA and CoMSIA contour maps suggest that a hydrogen bond acceptor near the nitrogen of the pyridine ring can enhance inhibitory activity values. This observation agrees with literature data, which suggests that the nitrogen pyridine lone pairs can complex with the iron ion leading to species that inhibits RNR. The derived CoMFA and CoMSIA models contribute to understand the structural features of this class of TSC as antitumor agents in terms of steric, electrostatic, hydrophobic and hydrogen bond donor and hydrogen bond acceptor fields as well as to the rational design of this key enzyme inhibitors.
Resumo:
Some sesquiterpene lactones (SLs) are the active compounds of a great number of traditionally medicinal plants from the Asteraceae family and possess considerable cytotoxic activity. Several studies in vitro have shown the inhibitory activity against cells derived from human carcinoma of the nasopharynx (KB). Chemical studies showed that the cytotoxic activity is due to the reaction of alpha,beta-unsaturated carbonyl structures of the SLs with thiols, such as cysteine. These studies support the view that SLs inhibit tumour growth by selective alkylation of growth-regulatory biological macromolecules, such as key enzymes, which control cell division, thereby inhibiting a variety of cellular functions, which directs the cells into apoptosis. In this study we investigated a set of 55 different sesquiterpene lactones, represented by 5 skeletons (22 germacranolides, 6 elemanolides, 2 eudesmanolides, 16 guaianolides and nor-derivatives and 9 pseudoguaianolides), in respect to their cytotoxic properties. The experimental results and 3D molecular descriptors were submitted to Kohonen self-organizing map (SOM) to classify (training set) and predict (test set) the cytotoxic activity. From the obtained results, it was concluded that only the geometrical descriptors showed satisfactory values. The Kohonen map obtained after training set using 25 geometrical descriptors shows a very significant match, mainly among the inactive compounds (similar to 84%). Analyzing both groups, the percentage seen is high (83%). The test set shows the highest match, where 89% of the substances had their cytotoxic activity correctly predicted. From these results, important properties for the inhibition potency are discussed for the whole dataset and for subsets of the different structural skeletons. (C) 2008 Elsevier Masson SAS. All rights reserved.