48 resultados para 313.8
Resumo:
The elastic-scattering angular distribution for (8)Li on (12)C has been measured at E(LAB) = 23.9 MeV with (8)Li radioactive nuclear beam produced by the Radioactive Ion Beams in Brazil facility. This angular distribution was analyzed in terms of optical-model with Woods-Saxon and double-folding Sao Paulo potential. The roles of the breakup and inelastic channels were also investigated with cluster folding and deformed potentials, respectively, through coupled-channels calculations. The angular distribution for the proton-transfer (12)C((8)Li, (9)Be)(11)B reaction was also measured at the same energy. The spectroscopic factor for the <(9)Be|(8)Li + p > bound system was obtained and compared with shell-model calculations and with other experimental values. Total reaction cross sections for the present system were also extracted from the elastic-scattering analysis. A systematic of the reduced reaction cross sections obtained from the present and published data on (6,7,8)Li isotopes on (12)C was performed as a function of energy.
Resumo:
Elastic scattering of (8)B, (7)Be, and (6)Li on a (58)Ni target has been measured at energies near the Coulomb barrier. Optical-model fits were made to the experimental angular distributions, and total reaction cross sections were deduced. A comparison with other systems provides striking evidence for proton-halo effects on (8)B reactions. As opposed to the situation for the neutron-halo nucleus (6)He, for which particle transfer dominates, the ""extra"" cross section observed for (8)B appears to result entirely from projectile breakup.
Resumo:
Angular distributions for the (9)Be((8)Li, (9)Be) (8)Li elastic-transfer reaction have been measured with a 27-MeV (8)Li radioactive nuclear beam. Spectroscopic factors for the <(9)Be vertical bar(8)Li + p > bound system were obtained from the comparison between the experimental differential cross sections and finite-range distorted-wave Born approximation calculations made with the code FRESCO. The spectroscopic factors so obtained are compared with shell-model calculations and other experimental values. Using the present value for the spectroscopic factors, cross sections and reaction rates for the (8)Li(p,gamma) (9)Be direct proton-capture reaction of astrophysical interest were calculated in the framework of the potential model.
Resumo:
Angular distributions for the elastic scattering of (8)B, (7)Be, and (6)Li on a (12)C target have been measured at E(lab) = 25.8, 18.8, and 12.3 MeV, respectively. The analyses of these angular distributions have been performed in terms of the optical model using Woods-Saxon and double-folding type potentials. The effect of breakup in the elastic scattering of (8)B + (12)C is investigated by performing coupled-channels calculations with the continuum discretized coupled-channel method and cluster-model folding potentials. Total reaction cross sections were deduced from the elastic-scattering analysis and compared with published data on elastic scattering of other weakly and tightly bound projectiles on (12)C, as a function of energy. With the exception of (4)He and (16)O, the data can be described using a universal function for the reduced cross sections.
Resumo:
The structure of laser glasses in the system (Y(2)O(3))(0.2){(Al(2)O(3))(x))(B(2)O(3))(0.8-x)} (0.15 <= x <= 0.40) has been investigated by means of (11)B, (27)Al, and (89)Y solid state NMR as well as electron spin echo envelope modulation (ESEEM) of Yb-doped samples. The latter technique has been applied for the first time to an aluminoborate glass system. (11)B magic-angle spinning (MAS)-NMR spectra reveal that, while the majority of the boron atoms are three-coordinated over the entire composition region, the fraction of three-coordinated boron atoms increases significantly with increasing x. Charge balance considerations as well as (11)B NMR lineshape analyses suggest that the dominant borate species are predominantly singly charged metaborate (BO(2/2)O(-)), doubly charged pyroborate (BO(1/2)(O(-))(2)), and (at x = 0.40) triply charged orthoborate groups. As x increases along this series, the average anionic charge per trigonal borate group increases from 1.38 to 2.91. (27)Al MAS-NMR spectra show that the alumina species are present in the coordination states four, five and six, and the fraction of four-coordinated Al increases markedly with increasing x. All of the Al coordination states are in intimate contact with both the three-and the four-coordinate boron species and vice versa, as indicated by (11)B/(27)Al rotational echo double resonance (REDOR) data. These results are consistent with the formation of a homogeneous, non-segregated glass structure. (89)Y solid state NMR spectra show a significant chemical shift trend, reflecting that the second coordination sphere becomes increasingly ""aluminate-like'' with increasing x. This conclusion is supported by electron spin echo envelope modulation (ESEEM) data of Yb-doped glasses, which indicate that both borate and aluminate species participate in the medium range structure of the rare-earth ions, consistent with a random spatial distribution of the glass components.
Resumo:
Thermodynamics, equilibrium structure, and dynamics of glass-forming liquids Ca(NO(3))(2)center dot nH(2)O, n=4, 6, and 8, have been investigated by molecular dynamics (MD) simulations. A polarizable model was considered for H(2)O and NO(3)- on the basis of previous fluctuating charge models for pure water and the molten salt 2Ca(NO(3))(2)center dot 3KNO(3). Similar thermodynamic properties have been obtained with nonpolarizable and polarizable models. The glass transition temperature, T(g), estimated from MD simulations was dependent on polarization, in particular the dependence of T(g) with electrolyte concentration. Significant polarization effects on equilibrium structure were observed in cation-cation, cation-anion, and water-water structures. Polarization increases the diffusion coefficient of H(2)O, but does not change significantly the diffusion coefficients of ions. Viscosity decreases upon inclusion of polarization, but the conductivity calculated with the polarizable model is smaller than the nonpolarizable model because polarization enhances anion-cation interactions.
Resumo:
The title compound, C(16)H(15)N(3)O(2)S, was synthesized by the reaction of 2-amino-5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carbonitrile and o-fluoronitrobenzene. The thiophene and nitrophenyl rings and amino and carbonitrile groups are coplanar with a maximum deviation of 0.046 (2) angstrom and a dihedral angle of 0.92 (6)degrees between the rings. The cyclohepta ring adopts a chair conformation. Intramolecular N-H center dot center dot center dot O and C-H center dot center dot center dot S interactions occur. In the crystal, the molecules form layers that are linked by pi-pi stacking interactions between the thiophene and benzene rings [centroid-centroid distances = 3.7089 (12) and 3.6170 (12) angstrom].
Resumo:
Voltage-gated sodium channels have been implicated in acute and chronic neuropathic pain. Among subtypes, Nav1.7 single mutations can cause congenital indifference to pain or chronic neuropathic pain syndromes, including paroxysmal ones. This channel is co-expressed with Nav1.8, which sustains the initial action potential; Nav1.3 is an embrionary channel which is expressed in neurons after injury, as in neuropathic conditions. Few studies are focused on the expression of these molecules in human tissues having chronic pain. Trigeminal neuralgia (TN) is an idiopathic paroxysmal pain treated with sodium channel blockers. The aim of this study was to investigate the expression of Nav1.3, Nav1.7 and Nav1.8 by RT-PCR in patients with TN, compared to controls. The gingival tissue was removed from the correspondent trigeminal area affected. We found that Nav1.7 was downregulated in TN (P=0.017) and Nav1.3 was upregulated in these patients (P=0.043). We propose a physiopathological mechanism for these findings. Besides vascular compression of TN, this disease might be also a channelopathy. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
In this work, Ti(92)B(8) alloy was processed via rapid solidification (splat-cooling) and then heat-treated at 700 degrees C and 1000 degrees C. A careful microstructural characterization indicated that, after rapid solidification, a very fine two-phase microstructure was produced with no significant saturation of B in alpha/beta Ti. There was no indication of amorphous formation in the rapidly solidified splats. Both alpha Ti and TiB were observed in the microstructures of the splats after heat-treatment at 700 degrees C and 1000 degrees C, confirming the stability of the alpha Ti+TiB two-phase region in this temperature range. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
By the use of installed fibers inside the city we demonstrated a 48.8 km ultralong Erbium-doped fiber laser in modelocking regime with repetition rate varying from 1-10 GHz. The shortest pulse duration of 42 ps at 2.5 GHz was obtained by optimization of intracavity dispersion.
Resumo:
This paper presents a small-area CMOS current-steering segmented digital-to-analog converter (DAC) design intended for RF transmitters in 2.45 GHz Bluetooth applications. The current-source design strategy is based on an iterative scheme whose variables are adjusted in a simple way, minimizing the area and the power consumption, and meeting the design specifications. A theoretical analysis of static-dynamic requirements and a new layout strategy to attain a small-area current-steering DAC are included. The DAC was designed and implemented in 0.35 mu m CMOS technology, requiring an active area of just 200 mu m x 200 mu m. Experimental results, with a full-scale output current of 700 mu A and a 3.3 V power supply, showed a spurious-free dynamic range of 58 dB for a 1 MHz output sine wave and sampling frequency of 50 MHz, with differential and integral nonlinearity of 0.3 and 0.37 LSB, respectively.
Resumo:
Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) properties of KAlSi(3)O(8):Mn glasses obtained through the sol gel technique were investigated. Samples were obtained with five different molar concentrations of 0.25, 0.5, 1, 2 and 5 mol% of manganese. Transmission Electronic Microscopy (TEM) indicated the occurrence of nanoparticles composed by glass matrix elements with Mn. Best results for TL response were obtained with 0.5 mol% Mn doped sample, which exhibits a TL peak at 180 degrees C. The TL spectrum of this sample presents a broad emission band from 450 to 700 nm with a peak at 575 nm approximately. The emission band fits very well with the characteristic lines of the Mn(2+) emission features. According to this fact, the band at 410 nm can be ascribed to (6)A(1)(S) -> (4)A(1)(G), (4)E(G) transition, while the 545 nm band can be attributed to the superposition of the transitions (6)A(1)(S) -> (4)T(2)(G) and (6)A(1)(S) -> (4)T(1)(G). The dependence of the TL response with the energy of X-rays (27-41 keV) showed a small decrease of the TL intensity in the high energy region. Excitation with blue LEDs showed OSL in the UV region with a fast decay component. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work presents a method for predicting resource availability in opportunistic grids by means of use pattern analysis (UPA), a technique based on non-supervised learning methods. This prediction method is based on the assumption of the existence of several classes of computational resource use patterns, which can be used to predict the resource availability. Trace-driven simulations validate this basic assumptions, which also provide the parameter settings for the accurate learning of resource use patterns. Experiments made with an implementation of the UPA method show the feasibility of its use in the scheduling of grid tasks with very little overhead. The experiments also demonstrate the method`s superiority over other predictive and non-predictive methods. An adaptative prediction method is suggested to deal with the lack of training data at initialization. Further adaptative behaviour is motivated by experiments which show that, in some special environments, reliable resource use patterns may not always be detected. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The well established rat hepatocarcinogen N-nitrosopytrolidine (NPYR, 1) requires metabolic activation to DNA adducts to express its carcinogenic activity. Among the NPYR-DNA adducts that have been identified, the cyclic 7,8-butanoguanine adduct 2-amino-6,7,8,9-tetrahydro-9-hydroxypyrido[2,1-f]purine-4(3H)-one (6) has been quantified using moderately sensitive methods, but its levels have never been compared to those of other DNA adducts of NPYR in rat hepatic DNA. Therefore, in this study, we developed a sensitive new LC-ESI-MS/MS-SRM method for the quantitation of adduct 6 and compared its levels to those of several other NPYR-DNA adducts formed by different mechanisms. The new method was shown to be accurate and precise, with good recoveries and low fmol detection limits. Rats were treated with NPYR by gavage at doses of 46, 92, or 184 mg/kg body weight and sacrificed 16 h later. Hepatic DNA was isolated and analyzed for NPYR-DNA adducts. Adduct 6 was by far the most prevalent, with levels ranging from about 900-3000 mu mol/mol Gua and responsive to dose. Levels of adducts formed from crotonaldehyde, a metabolite of NPYR, were about 0.2-0.9 mu mol/mol dGuo, while those of adducts resulting from reaction with DNA of tetrahydrofuranyl-like intermediates were in the range of 0.01-4 mu mol/mol deoxyribonucleoside. The results of this study demonstrate that, among typical NPYR-DNA adducts, adduct 6 is easily the most abundant in hepatic DNA. Since previous studies have shown that it can be detected in the urine of NPYR-treated rats, the results suggest that it is a potential candidate as a biomarker for assessing human exposure to and metabolic activation of NPYR.
Resumo:
A selective and reproducible off-line solid-phase microextraction procedure was developed for the simultaneous enantioselective determination of mirtazapine (MRT), demethylmirtazapine and 8-hydroxymirtazapine in human urine. CE was used for optimization of the extraction procedure whereas LC-MS was used for method validation and application. The influence of important factors in the solid-phase microextraction efficiency is discussed, such as the fiber coatings, extraction time, pH, ionic strength, temperature and desorption time. Before extraction, human urine samples were submitted to enzymatic hydrolysis at 37 degrees C for 16 h. Then, the enzyme was precipitated with trichloroacetic acid and the pH was adjusted to 8 with 1 mol/L pH 11 phosphate buffer solution. In the extraction, the analytes were transferred from the aqueous solution to the polydimethylsiloxane-divinylbenzene fiber coating and then desorbed in methanol. The mean recoveries were 5.4, 1.7 and 1.0% for MRT, demethylmirtazapine and 8-hydroxymirtazapine enantiomers, respectively. The method was linear over the concentration range of 62-1250 ng/mL. The within-day and between-day assay precision and accuracy were lower than 15%. The method was successfully employed in a preliminary cumulative urinary excretion study after administration of racemic MRT to a healthy volunteer.