126 resultados para 13368-014
Resumo:
Objective. - The objective of this work was to verify if there was a difference in throwing speed performance between heavier and lighter weight categories in judo. Methods and subjects. - Sixteen (16) judoists 18 +/- 3 years old, eight considered in the lightweight category (< 66 kg) and eight considered in the heavyweight (> 73 kg) category, participated in the study after signing a term of informed consent. A force-velocity test was used to determine the anaerobic power, strength, and pedal speed for each subject. In addition, three trials of Nage-komi exercise, each comprised of a set of Osoto-gari (15s), Uchi-mata (15s) and Seoi-nage (15s) throws were performed by each subject to ascertain throwing speed. Throws within the sets were intersected by one period of three minutes passive rest, while the trials were separated by one period of 10 minutes passive rest. Heart rate and the greatest number of throws within each set were measured for three trials. One-way analysis of variance (Anova) was used to compare the number of throws between the two weight categories and a ""Student"" test when the difference was significant. A correlation was used to examine the link between the different parameters. Results. - The force-velocity test did not show a significant difference in pedal speed between the two categories. However, there was a significant difference between the two categories when throwing speed was measured by the number of throws (p < 0.05) executed during the Seoi-nage (p < 0.01) and Uchi-mata (p <0.05) techniques. There was however, no significant difference between the two categories in Osoto-gari technique. Conclusion. - The throwing speed of judoists represented by the number of throws is significantly different between the two categories. The lighter category has more speed than the heavier category using the arm technique (Seoi-nage), while the heavier category has more speed using the leg technique with half turn of the attacker`s body (Uchi-mata). As a result, throwing speed is related to the type of technique used and not weight category. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
The excess of sugarcane bagasse (SCB) from the sugar-alcohol industry is considered a by-product with great potential for many bioproducts production. This work had as objective to verify the performance of sugarcane bagasse hemicellulosic hydrolysate (SCBHH) as source of sugars for enzymatic or in vitro xylitol production. For this purpose, xylitol enzymatic production was evaluated using different concentrations of treated SCBHH in the commercial reaction media. The weak acid hydrolysis of SCB provided a hydrolysate with 18 g L(-1) and 6 g L(-1) of xylose and glucose, respectively. Considering the reactions, changes at xylose xylitol conversion efficiency and volumetric productivity in xylitol were not observed for the control experiment and using 20 and 40% v.v (1) of SCBHH in the reaction media. The conversion efficiency achieved 100% in all the experiments tested. The results showed that treated SCBHH is suitable as xylose and glucose source for the enzymatic xylitol production and that this process has potential as an alternative for traditional xylitol production ways. (C) 2011 Published by Elsevier Ltd.
Resumo:
Sixteen different strains of Saccharomyces cerevisiae and Saccharomyces bayanus were evaluated in the production of raspberry fruit wine. Raspberry juice sugar concentrations were adjusted to 16 degrees Brix with a sucrose solution, and batch fermentations were performed at 22 degrees C. Various kinetic parameters, such as the conversion factors of the substrates into ethanol (Y(p/s)), biomass (Y(x/s)), glycerol (Y(g/s)) and acetic acid (Y(ac/s)), the volumetric productivity of ethanol (Q(p)), the biomass productivity (P(x)), and the fermentation efficiency (E(f)) were calculated. Volatile compounds (alcohols, ethyl esters, acetates of higher alcohols and volatile fatty acids) were determined by gas chromatography (GC-FID). The highest values for the E(f), Y(p/s), Y(g/s), and Y(x/s) parameters were obtained when strains commonly used in the fuel ethanol industry (S. cerevisiae PE-2, BG, SA, CAT-1, and VR-1) were used to ferment raspberry juice. S. cerevisiae strain UFLA FW 15, isolated from fruit, displayed similar results. Twenty-one volatile compounds were identified in raspberry wines. The highest concentrations of total volatile compounds were found in wines produced with S. cerevisiae strains UFLA FW 15 (87,435 mu g/L), CAT-1 (80,317.01 mu g/L), VR-1 (67,573.99 mu g/L) and S. bayanus CBS 1505 (71,660.32 mu g/L). The highest concentrations of ethyl esters were 454.33 mu g/L, 440.33 mu g/L and 438 mu g/L for S. cerevisiae strains UFLA FW 15, VR-1 and BG, respectively. Similar to concentrations of ethyl esters, the highest concentrations of acetates (1927.67 mu g/L) and higher alcohols (83,996.33 mu g/L) were produced in raspberry wine from S. cerevisiae UFLA FW 15. The maximum concentration of volatile fatty acids was found in raspberry wine produced by S. cerevisiae strain VR-1. We conclude that S. cerevisiae strain UFLA FW 15 fermented raspberry juice and produced a fruit wine with low concentrations of acids and high concentrations of acetates, higher alcohols and ethyl esters. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Silicon nitride ceramics were sintered using Y(2)O(3)-Al(2)O(3) or E(2)O(3)-Al(2)O(3) (E(2)O(3) denotes a mixed oxide Of Y(2)O(3) and rare-earth oxides) as sintering additives. The intergranular phases formed after sintering was investigated using high-resolution X-ray diffraction (HRXRD). The use of synchrotron radiation enabled high angular resolution and a high signal to background ratio. Besides the appearance Of beta-Si(3)N(4) phase the intergranular phases Y(3)Al(5)O(12) (YAG) and Y(2)SiO(5) were identified in both samples. The refinement of the structural parameters by the Rietveld method indicated similar crystalline structure Of beta-Si(3)N(4) for both systems used as sintering additive. On the other hand, the intergranular phases Y(3)Al(5)O(12) and Y(2)SiO(5) shown a decrease of the lattice parameters, when E(2)O(3) was used as additive, indicating the formation of solid solutions of E(3)Al(5)O(12) and E(2)SiO(5), respectively. (C) 2007 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
This paper presents a new approach, predictor-corrector modified barrier approach (PCMBA), to minimize the active losses in power system planning studies. In the PCMBA, the inequality constraints are transformed into equalities by introducing positive auxiliary variables. which are perturbed by the barrier parameter, and treated by the modified barrier method. The first-order necessary conditions of the Lagrangian function are solved by predictor-corrector Newton`s method. The perturbation of the auxiliary variables results in an expansion of the feasible set of the original problem, reaching the limits of the inequality constraints. The feasibility of the proposed approach is demonstrated using various IEEE test systems and a realistic power system of 2256-bus corresponding to the Brazilian South-Southeastern interconnected system. The results show that the utilization of the predictor-corrector method with the pure modified barrier approach accelerates the convergence of the problem in terms of the number of iterations and computational time. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with analysis of multiple random crack propagation in two-dimensional domains using the boundary element method (BEM). BEM is known to be a robust and accurate numerical technique for analysing this type of problem. The formulation adopted in this work is based on the dual BEM, for which singular and hyper-singular integral equations are used. We propose an iterative scheme to predict the crack growth path and the crack length increment at each time step. The proposed scheme able us to simulate localisation and coalescence phenomena, which is the main contribution of this paper. Considering the fracture mechanics analysis, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of simple and multi-fractured domains, loaded up to the rupture, are considered to illustrate the applicability of the proposed scheme. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Due to manufacturing or damage process, brittle materials present a large number of micro-cracks which are randomly distributed. The lifetime of these materials is governed by crack propagation under the applied mechanical and thermal loadings. In order to deal with these kinds of materials, the present work develops a boundary element method (BEM) model allowing for the analysis of multiple random crack propagation in plane structures. The adopted formulation is based on the dual BEM, for which singular and hyper-singular integral equations are used. An iterative scheme to predict the crack growth path and crack length increment is proposed. This scheme enables us to simulate the localization and coalescence phenomena, which are the main contribution of this paper. Considering the fracture mechanics approach, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of multi-fractured domains, loaded up to rupture, are considered to illustrate the applicability of the proposed method. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30 degrees C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8 h. The reactor R1 operating with a HRT of 2 h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H(2) mol(-1) glucose with 1.3 mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The main objective of this work was to investigate three packing materials (polyurethane foam, sugar-cane bagasse, and coconut fibre) for biofiltration of a gaseous mixture containing hydrogen sulphide (H(2)S). Mixed cultures were obtained from two sources, aerated submerged biofilters and activated sludge, and were utilised as inoculums. Biofilters reached 100% removal efficiency after two clays of operation. The empty bed residence time was 495 for each of the biofilters. The reactors were operated simultaneously, and the inlet concentrations of H(2)S varied between 184 and 644 ppmv during the long-term continuous operation of the biofilters (100 clays). Average removal efficiencies remained above 99.3%, taking into consideration the entire period of operation. Average elimination capacities reached by the biofilters packed with polyurethane foam, coconut fibre, and sugarcane bagasse were in the range of 17.8-66.6; 18.9-68.8, and 18.7-72.9g m(-3) h(-1), respectively. Finally, we concluded that the packing materials tested in this work are appropriate for the long-term biofiltration of hydrogen sulphide. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The production of hydrogen from soft-drink wastewater in two upflow anaerobic packed-bed reactors was evaluated. The results show that soft-drink wastewater is a good source for hydrogen generation. Data from both reactors indicate that the reactor without medium containing macro- and micronutrients (R2) provided a higher hydrogen yield (3.5 mol H(2) mol(-1) of sucrose) as compared to the reactor (R1) with a nutrient-containing medium (3.3 mol H(2) mol(-1) of sucrose). Reactor R2 continuously produced hydrogen, whereas reactor R1 exhibited a short period of production and produced lower amounts of hydrogen. Better hydrogen production rates and percentages of biogas were also observed for reactor R2, which produced 0.4 L h(-1) L(-1) and 15.8% of H(2), compared to reactor R1, which produced 0.2 L h(-1) L(-1) and 2.6% of H(2). The difference in performance between the reactors was likely due to changes in the metabolic pathway for hydrogen production and decreases in bed porosity as a result of excessive biomass growth in reactor R1. Molecular biological analyses of samples from reactors R1 and R2 indicated the presence of several microorganisms, including Clostridium (91% similarity), Enterobacter (93% similarity) and Klebsiella (97% similarity). Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a technological viability study of wastewater treatment in an automobile industry by an anaerobic sequencing batch biofilm reactor containing immobilized biomass (AnSBBR) with a draft tube. The reactor was operated in 8-h cycles, with agitation of 400 rpm, at 30 degrees C and treating 2.0 L wastewater per cycle. Initially the efficiency and stability of the reactor were studied when supplied with nutrients and alkalinity. Removal efficiency of 88% was obtained at volumetric loading rate (VLR) of 3.09 mg COD/L day. When VLR was increased to 6.19 mg COD/L day the system presented stable operation with reduction in efficiency of 71%. In a second stage the AnSBBR was operated treating wastewater in natura, i.e., without nutrients supplementation, only with alkalinity, thereby changing feed strategy. The first strategy consisted in feeding 2.0 L batch wise (10 min), the second in feeding 1.0 L of influent batch wise (10 min) and an additional 1.0 L fed-batch wise (4 h), both dewatering 2.0 L of the effluent in 10 min. The third one maintained 1.0 L of treated effluent in the reactor, without discharging, and 1.0 L of influent was fed fed-batch wise (4 h) with dewatering 1.0 L of the effluent in 10 min. For all implemented strategies (VLR of 1.40, 2.57 and 2.61 mg COD/L day) the system presented stability and removal efficiency of approximately 80%. These results show that the AnSBBR presents operational flexibility, as the influent can be fed according to industry availability. In industrial processes this is a considerable advantage, as the influent may be prone to variations. Moreover, for all the investigated conditions the kinetic parameters were obtained from fitting a first-order model to the profiles of organic matter, total volatile acids and methane concentrations. Analysis of the kinetic parameters showed that the best strategy is feeding 1.0 L of influent batchwise (10 min) and 1.0 L fed-batch wise (4 h) in 8-h cycle. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A modeling study was completed to develop a methodology that combines the sequencing and finite difference methods for the simulation of a heterogeneous model of a tubular reactor applied in the treatment of wastewater. The system included a liquid phase (convection diffusion transport) and a solid phase (diffusion reaction) that was obtained by completing a mass balance in the reactor and in the particle, respectively. The model was solved using a pilot-scale horizontal-flow anaerobic immobilized biomass (HAIB) reactor to treat domestic sewage, with the concentration results compared with the experimental data. A comparison of the behavior of the liquid phase concentration profile and the experimental results indicated that both the numerical methods offer a good description of the behavior of the concentration along the reactor. The advantage of the sequencing method over the finite difference method is that it is easier to apply and requires less computational time to model the dynamic simulation of outlet response of HAIB.
Resumo:
The aim of this study was to evaluate the potential of the fibrous material obtained from ethanol-water fractionation of bagasse as reinforcement of thermoplastic starches in order to improve their mechanical properties. The composites were elaborated using matrices of corn and cassava starches plasticized with 30 wt%glycerin. The mixtures (0,5,10 and 15 wt% bagasse fiber) were elaborated in a rheometer at 150 degrees C. The mixtures obtained were pressed on a hot plate press at 155 degrees C. The test specimens were obtained according to ASTM D638. Tensile tests, moisture absorption tests for 24 days (20-23 degrees C and 53% RH, ASTM E104), and dynamic-mechanical analyses (DMA) in tensile mode were carried out. Images by scanning electron microscopy (SEM) and X-ray diffraction were obtained. Fibers (10 wt% bagasse fiber) increased tensile strength by 44% and 47% compared to corn and cassava starches, respectively. The reinforcement (15 wt% bagasse fiber) increased more than fourfold the elastic modulus on starch matrices. The storage modulus at 30 C (E(30 degrees C)`) increased as the bagasse fiber content increased, following the trend of tensile elastic modulus. The results indicate that these fibers have potential applications in the development of biodegradable composite materials. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present work the squeeze flow technique was used to evaluate the rheological behavior of cement-based mortars containing macroscopic aggregates up to 1.2 mm. Compositions with different water and air contents were tested at three squeezing rates (0.01, 0.1 and 1 mm/s) 15 and 60 min after mixing. The mortars prepared with low (13 wt.%) and usual water content (15 wt.%) presented opposite behaviors as a function of elapsed time and squeezing speed. The first lost its cohesion with time and required higher loads when squeezed faster, while the latter became stiffer with time and was more difficult to be squeezed slowly as a result of phase segregation. Due to the increase of air content, the effects of this compressible phase became more significant and a more complex behavior was observed. Rheological properties such as elongational viscosity and yield stress were also determined. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work presents a case study on technology assessment for power quality improvement devices. A system compatibility test protocol for power quality mitigation devices was developed in order to evaluate the functionality of three-phase voltage restoration devices. In order to validate this test protocol, the micro-DVR, a reduced power development platform for DVR (dynamic voltage restorer) devices, was tested and the results are discussed based on voltage disturbances standards. (C) 2011 Elsevier B.V. All rights reserved.