20 resultados para 1, 4-Dipolar Intermediates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of the IR carbonyl band of the N-methoxy-N-methyl-2-[(4`-substituted)phenyisulfonyI]propanamides Y-PhSO(2)CH(Me)C(O)N(OMe)Me (Y = OMe 1, Me 2, H 3, Cl 4, NO(2) 5), supported by HF/6-31G(d,p) calculations of 3,, indicated the existence of two gauche conformers (g(1) and g(2)), the g, conformer being the most stable and the least polar one (in gas phase and in solution). Both conformers are present in solution of the non polar solvent (CCl(4)) for 1-5 and in solution of the more polar solvents (CHCl(3)) for 1. 4, 5 and (CH(2)Cl(2)) for 5, while only the g(1) conformer is present in solution of the most polar solvent (CH(3)CN) for 1-5. The g, and g2 conformers correspond to the enantiomeric pairs of diastereomers (diast(1) and diast(2)) whose relative configurations are [C(3)(R)N(R)]/[C(3)(s)N(s)] and [C(3)(R)N(s)]/[C(3)(s)N(R)], respectively. The computed carbonyl frequencies for g(1) (diast(1)) and g(2) (diast(2)) stereoisomers of3 match well the experimental values. The NBO analysis, for 3 shows the important role of the orbital interactions in conformer stabilization and the overall balance of these interactions corroborates that the g, conformer is more stable than the 92 one. The observed abnormal solvent effect on the relative intensities of the carbonyl doublet components is attributed to the molecular crowding in the g2 conformer which hinders its solvation in comparison to the g, conformer (diast(1)). X-ray single crystal analysis performed for 3 shows the existence Of two 92, and g(1b) conformers of diastereomers (diast2, and diast(1b)) whose absolute configurations are [C(3)(R)N(s)] and [C(3)(R)N(R)], respectively. The larger population and. thus, the larger stabilization of the g(2), conformer over the gib form in the crystals may be associated with a larger energy gain deriving from dipole moment coupling in the former conformer along with a series of C-H center dot center dot center dot O electrostatic and hydrogen bond interactions, (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of the IR carbonyl band of the N-methoxy-N-methyl-2-[(4`-substituted)phenylthio]propanamides Y-PhSCH(Me)C(O)N(OMe)Me (Y=OMe 1, Me 2, H 3, Cl 4, NO(2) 5), supported by B3LYP/cc-pVDZ calculations of 3, indicated the existence of two gauche conformers (g(1) and g(2)), the g(1) conformer being the more stable and the less polar one (in gas phase and in solution). Both conformers are present in solution of the polar solvents (CH(2)Cl(2) and CH(3)CN) for 1-5 and in solution of the less polar solvent (CHCl(3)) for 1-4, while only the g(1) conformer is present in solution of non polar solvents (n-C(6)H(14) and CCl(4)) and in solution of CHCl(3) for 5. NBO analysis shows that both the sigma(C-S) -> pi*(C=O) (hyperconjugative) and the pi(C=O) -> sigma*(C-S) orbital interactions contribute almost to the same extent for the stabilization of g(1) and g(2) conformers. The pi*(C=O) -> sigma*(C-S), n(S) -> pi*(C=O) and the n(S) -> pi*(C=O) orbital interactions stabilize more the g(1) conformer than the g(2) one. Moreover, the suitable geometry of the g(1) conformer leads to its stabilization through the LP(O2) -> sigma*(C8-H11) orbital interaction (hydrogen bond) along with the strong O([CO])(delta-) center dot center dot center dot H([O-Ph])(delta+) electrostatic interaction. On the other hand, the appropriate geometry of the g(2) conformer leads to its stabilization by the LP(O22) -> sigma*(C9-H13) orbital interaction (hydrogen bond) along with the weak O([OMe])(delta-) center dot center dot center dot H([o`-Ph])(delta+) electrostatic static interaction. As for the 4`-nitro derivative 5 the ortho-phenyl hydrogen atom becomes more acidic, leading to a stronger O([CO])(delta-) center dot center dot center dot H([o-Ph])(delta+) interaction and, thus, into a larger stabilization of the g(1) conformer in the whole series. This trend is responsible for the unique IR carbonyl band in CHCl(3) solution of 5. The larger occupancy of the pi*(C=O) orbital of the g(1) conformer relative to that of the g(2) conformer, along with the O([CO])(delta-) center dot center dot center dot H([o-Ph])(delta+) electrostatic interaction (hydrogen bond) justifies the lower carbonyl frequency of the g(1) conformer with respect to the g(2) one, in gas phase and in solution. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of the IR nu(co) bands of the 2-ethylsulfinyl-(4`-substituted)-phenylthioacetates 4`-Y-C(6)H(4)SC(O)CH(2)S(O)Et (Y = NO(2) 1, Cl 2, Br 3, H 4, Me 5, OMe 6) supported by B3LY/6-31G(d,p) calculations along with the NBO analysis for 1.4 and 6 and X-ray analysis for 3, indicated the existence of four gauche (q-g-syn, g(3)-syn. g(1)-atin and q-g(2)-syn) conformers for 1-6 The calculations reproduce quite well the experimental results, i e the computed q-g-syn and g3-syn conformers correspond in the IR spectrum (in solution), to the nu(co) doublet higher frequency component of larger intensity, while the computed grant, conformer correspond to the nu(co) doublet lower frequency component (in solution) NBO analysis showed that the n(s) -> pi(center dot)(c1=o2), no(co) -> sigma(c1-s3), no(co) -> sigma(c1-c4) orbital interactions are the main factors which stabilize the q-g-syn, g(3)-syn, g(1)-anti and q-g(2)-syn conformers for 1, 4 and 6 The no(co) -> sigma(c1-s3) interaction which stabilizes the q-g-syn, g(3)-syn and q-g(2)-syn conformers into a larger extent than the granti conformer, is responsible for the larger tto frequencies of the former conformers relative to the latter one. The q-g-syn, g(3)-syn and q-g(2)-syn conformers are further stabilized sigma(c4-s5) -> pi(co)center dot (strong). pi(co)/sigma(c1-c4,) no(co) -> sigma(c6-H17[Et]) (weak) and pi(co)/sigma(c4-c5) pi(co) (strong) orbital interactions. The q-g-syn conformer is also stabilized by sigma(c4-s5) -> pi(center dot)(co) (strong), pi(co)/sigma(c4-c5).no(co) -> sigma(c6-H17[Et]), pi(C9=C11[ph]) -> sigma(c4-H6x-CH2]) (weak). no((SO)) -> sigma(C11-H23[ph]) (medium) pi(co)/sigma(c4-c5)(strong) orbital interactions. The q-g-syn conformei is further stabilized by the n(S5) O((C))(8-) S((SO))(8+) attractive Coulornbic interaction while the q-g(2)-syn conformer is destabilized by the n55 0,8c-0) repulsive Coulombic interaction. This analysis indicates the following conformer stabilization order. q-g-syn, g(3)-syn > g(1)-anti >> q-g(2)-syn X-ray single crystal analysis of 3 indicates that it assumes in the solid a distorted q-g(2)-syn geometry which is stabilized through almost the same orbital and Coulombic interaction which takes place for the q-g(2)-syn conformer, in the gas, along with dipole moment coupling and a series intermolecular C-HO0 interactions. (C) 2010 Elsevier B V All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degradation of phenol by a hybrid process (activated sludge + photocatalysis) in a high salinity medium (50 g L-1 of chloride) has been investigated. The sludge used from a municipal wastewater facility was adapted to the high salt concentrations prior to use. The photocatalytic conditions were optimized by means of a factorial experimental design. TiO2 P25 from Degussa was used as the photocatalyst. The initial phenol concentration was approximately 200 mg L-1 and complete removal of phenol and a mineralization degree above 98% were achieved within 25 h of treatment (24 h of biological treatment and I h of photocatalysis). From HPLC analyses, five hydroxylated intermediates formed during oxidation have been identified. The main ones were catechol and hydroquinone, followed by 1,2,4-benzenetriol, 2-hydroxy- 1,4-benzoquinone, and pyrogallol, in this order. No formation of organochlorine compounds was observed. Therefore, the proposed hybrid process showed itself to be suited to treat phenol in the presence of high contents of salt. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of paramagnetic species in the aqueous ring opening metathesis polymerizations of the exo,exo-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid monomer with RuCl(3) and K(2)[RuCl(5)H(2)O] compounds was studied using ESR techniques. It was observed that the intensities of the Ru(III) signals in the ESR spectra decrease on the time scale of the induction period so that the ROMP can take place. The intensity of the Ru(III) signal almost disappeared 50 min after reacting with K(2)[RuCl(5)H(2)O] and after 100 mm in the case of RuCl(3). Reactions of the cis-[Ru(NH(3))(4)(H(2)O)(2)](tfms)(3) and [Ru(NH(3))(5)H(2)O](tfms)(3) complexes with the monomer and different organic compounds representing the organic functions in the monomer (furan, norbornene, but-2-ene-1,4-diol and formic, acetic, oxalic and maleic acids) were also monitored by ESR and UV/vis spectra. It was deduced that the organic acids provide the disappearance of the Ru(III) signal. The proton NMR relaxation times of the residual water in D(2)O for reactions with oxalic acid suggested that the presence of paramagnetic ions in the solution decreases along with