328 resultados para Surface treated implants
Resumo:
Objective: The aim of the present study was to evaluate the effect of CO(2) laser irradiation (10.6 mu m) at 0.3 J/cm(2) (0.5 mu s; 226 Hz) on the resistance of softened enamel to toothbrushing abrasion, in vitro. Methods: Sixty human enamel samples were obtained, polished with silicon carbide papers and randomly divided into five groups (n = 12), receiving 5 different surface treatments: laser irradiation (L), fluoride (AmF/NaF gel) application (F), laser prior to fluoride (LF), fluoride prior to laser (FL), non-treated control (C). After surface treatment they were submitted to a 25-day erosive-abrasive cycle in 100 ml sprite light (90 s) and brushed twice daily with an electric toothbrush. Between the demineralization periods samples were immersed in supersaturated mineral solution. At the end of the experiments enamel surface loss was determined using a contact profilometer and morphological analysis was performed using scanning electron microscopy (SEM). For SEM analysis of demineralization pattern, cross-sectional cuts of cycled samples were prepared. The data were statistically analysed by one-way ANOVA model with subsequent pairwise comparison of treatments. Results: Abrasive surface loss was significantly lower in all laser groups compared to both control and fluoride groups (p < 0.0001 in all cases). Amongst the laser groups no significant difference was observed. Softened enamel layer underneath lesions was less pronounced in laser-irradiated samples. Conclusion: Irradiation of dental enamel with a CO(2) laser at 0.3 J/cm(2) (5 mu s, 226 Hz) either alone or in combination with amine fluoride gel significantly decreases toothbrushing abrasion of softened-enamel, in vitro. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this in vitro study was to compare the bond strength between fiber post and laser-treated root canals. Forty single-rooted bovine teeth were endodontically treated and randomly divided into four groups of equal size according to the root canal treatment: group 1 conventional treatment (without laser irradiation); group 2 Nd:YAG laser (1.5 W, 10 Hz, 100 mJ); group 3 Er,Cr:YSGG laser (0.75 W, 20 Hz); and group 4 Nd:YAG + Er,Cr:YSGG lasers. The fiber posts were cemented with an adhesive system + resin cement, in accordance with the manufacturer`s instructions. A mini acrylic pipe was fixed on the coronal section of the post using a light-polymerized resin. Specimens were mounted on an acrylic pipe with a self-polymerized resin. Retention forces were determined using a universal testing machine (0.5 mm/min). Data were analyzed using one-way ANOVA and Tukey tests (p < 0.05). The post retention force in group 2 was found to be lower than that in the other experimental groups. Fractures were observed at the interface between the dentin and the resin in all groups. High-intensity lasers can be used in conventional endodontic treatment; however, root canal surface irradiation using the Nd:YAG laser was shown to negatively affect the post retention force.
Resumo:
Background and Objectives: This study evaluated the hybrid layer (HL) morphology created by three adhesive systems (AS) on dentin surfaces treated with Er:YAG laser using two irradiation parameters. Study Design: Occlusal flat dentin surfaces of 36 human third molars were assigned into nine groups (n = 4) according to the following ASs: one bottle etch&rinse Single Bond Plus (3M ESPE), two-step Clearfil Protect Bond (Kuraray), and all-in-one S3 Bond (Kuraray) self-etching, which were labeled with rhodamine B or fluorescein isothiocyanate dextran and were applied to dentin surfaces that were irradiated with Er:YAG laser at either 120 (38.7 J/cm(2)) or 200 mJ/pulse (64.5 J/cm(2)), or were applied to untreated dentin surfaces (control group). The ASs were light-activated following MI and the bonded surfaces were restored with resin composite Z250 (3M ESPE). After 24 hours of storage in vegetable oil, the restored teeth were vertically, serially sectioned into 1-mm thick slabs, which had the adhesive interfaces analyzed with confocal laser microscope (CLSM-LSM 510 Meta). CLSM images were recorded in the fluorescent mode from three different regions along each bonded interface. Results: Non-uniform HL was created on laser-irradiated dentin surfaces regardless of laser irradiation protocol for all AS, while regular and uniform HL was observed in the control groups. ""Stretch mark""-like red lines were found within the HL as a result of resin infiltration into dentin microfissures, which were predominantly observed in 200 mJ/pulse groups regardless of AS. Poor resin infiltration into peritubular dentin was observed in most regions of adhesive interfaces created by all ASs on laser-irradiated dentin, resulting in thin resin tags with neither funnel-shaped morphology nor lateral resin projections. Conclusion: Laser irradiation of dentin surfaces at 120 or 200 mJ/pulse resulted in morphological changes in HL and resin tags for all ASs evaluated in the study. Lasers Surg. Med. 42:662-670, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Objectives. This study aimed to assess the apical surface morphology of maxillary central incisors resected 3.0 mm from the tooth apex using Zekrya burs or Er:YAG laser, with or without subsequent direct Nd:YAG laser irradiation (apical and buccal surfaces) and indirect irradiation (palatal surface). Study design. Forty maxillary central incisors were instrumented and obturated. The roots were divided into 4 groups according to the root resection method (Zekrya bur or Er: YAG laser -1.8 W, 450 mJ, 4 Hz, 113 J/cm(2)) and further surface treatment (none or Nd: YAG laser -2.0 W, 100 mJ, 20 Hz, 124 J/cm(2)). The teeth were prepared for SEM analysis. Scores ranging from 1 to 4 were attributed to cut quality and morphological changes. The data were analyzed by the Kruskal-Wallis test and by Dunn`s test. Results. SEM images showed irregular surfaces on the apical portions resected with Zekrya burs, with smear layer and grooves in the resected dentine and slight gutta-percha displacement and plasticization. On the other hand, apicectomies carried out with Er: YAG laser showed morphological changes compatible with ablated dentine, with rough surfaces and craters. In spite of the presence of plasticized gutta-percha, with the presence of bubbles, an irregular adaptation of the filling material to the root walls was also observed. Direct Nd: YAG laser irradiation of the apical and buccal surfaces of the resected roots resulted in areas of resolidification and fusion in the dentine and cementum, with a vitrified aspect; indirect Nd: YAG laser irradiation of the palatal surfaces yielded a lower number of changes in the cementum, with irregular resolidification areas. Conclusions. There were no differences in terms of cut quality between the use of burs and Er: YAG laser or between the 2 surfaces (apical and buccal) treated with Nd: YAG laser with direct irradiation. However, morphological changes were significantly less frequent on surfaces submitted to indirect irradiation (palatal) when compared with those directly irradiated. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010; 109: e77-e82)
Resumo:
Although the cariostatic effects of CO(2) laser on enamel have been shown, its effects on root surface demineralization remains uncertain. The objectives of this in vitro research was to establish safe parameters for a pulsed 10.6 mu m CO(2) laser and to evaluate its effect on morphological features of the root surface, as well as on the reduction of root demineralization. Ninety-five human root surfaces were randomly divided into five groups: G1-No treatment (control); G2-2.5 J/cm(2); G3-4.0 J/cm(2); G4-5.0 J/cm(2); and G5-6.0 J/cm(2). Intrapulpal temperature was evaluated during root surface irradiation by a thermocouple and morphological changes were evaluated by SEM. After the surface treatment, the specimens were submitted to a 7-day pH-cycling model. Subsequently, the cross-sectional Knoop microhardness values were measured. For all irradiated groups, intrapulpal temperature changes were less than 1.5 degrees C. Scanning electron microscopy images indicated that fluences as low as 4.0 J/cm(2) were sufficient to induce morphological changes in the root surface. Additionally, for fluences reaching or exceeding 4.0 J/cm(2), laser-induced inhibitory effects on root surface demineralization were observed. It was concluded that laser energy density in the range of 4.0 to 6.0 J/cm(2) could be applied to a dental root to reduce demineralization of this surface without compromising pulp vitality.
Resumo:
This study tested if dentin adhesion is affected by Er:YAG laser. Ninety dentin disks were divided in groups (n=10): G1, control; G2, Er:YAG laser 150 mJ, 90 degrees contact, 38.8 J/cm(2); G3, Er:YAG laser 70 mJ, 90 degrees contact, 18.1 J/cm(2); G4, Er:YAG laser 150 mJ, 90 degrees non-contact, 1.44 J/cm(2); G5, Er:YAG laser 70 mJ, 90 degrees non-contact, 0.67 J/cm(2); G6, Er:YAG laser 150 mJ, 45 degrees contact, 37.5 J/cm(2); G7, Er:YAG laser 70 mJ, 45 degrees contact, 17.5 J/cm(2); G8, Er:YAG laser 150 mJ, 45 degrees non-contact, 1.55 J/cm(2); and G9, Er:YAG laser 70 mJ, 45 degrees non-contact, 0.72 J/cm(2). Bonding procedures were carried out and the micro-shear-bond strength (MSBS) test was performed. The adhesive surfaces were analyzed under SEM. Two-way ANOVA and multiple comparison tests revealed that MSBS was significantly influenced by the laser irradiation (p < 0.05). Mean values (MPa) of the MSBS test were: G1 (44.97 +/- 6.36), G2 (23.83 +/- 2.46), G3 (30.26 +/- 2.57), G4 (35.29 +/- 3.74), G5 (41.90 +/- 4.95), G6 (27.48 +/- 2.11), G7 (34.61 +/- 2.91), G8 (37.16 +/- 1.96), and G9 (41.74 +/- 1.60). It was concluded that the Er:YAG laser can constitute an alternative tool for dentin treatment before bonding procedures.
Resumo:
Objectives: The aim of this study was to compare the fracture strength of three techniques used to re-attach tooth fragments in sound and endodontically treated fractured teeth with or without fiber post placement. Material and methods: Ninety human lower incisors were randomly divided into three groups of 30 teeth each. In group A teeth were not subjected to endodontic treatment; while teeth from groups B and C were endodontically treated and the pulp chamber restored with a composite resin. All teeth were fractured by an axial load applied to the buccal area in order to obtain tooth fragments. Teeth from each group were then divided into three subgroups, according to the re-attachment technique: bonded-only, buccal-chamfer and circumferential chamfer. Before the re-attachment procedures, fiber posts were placed in teeth from group C using dual cure resin luting cement (Duo-Link). All teeth (groups A-C) had the fragments re-attached using a same dual cure resin luting cement. in the bonded-only group, no additional preparation was made. After re-attachment of the fragment, teeth from groups buccal and circumferential chamfer groups had a 1.0 mm depth chamfer placed in the fracture line either on buccal surfaceor along the buccal and lingual surfaces, respectively. increments of microhybid composite resin (Tetric Ceram) were used in subgroups buccal chamfer and circumferential chamfer to restore the chamfer. The specimens were loaded until fracture in the same pre-determined area. The force required to detach each fragment was recorded and the data was subjected to a three-way analysis of variance where factors Group and Re-attachment technique are independent measures and Time of fracture is a repeated measure factor (first and second) and Tukey`s test (alpha = 0.05). Results: The main factors Re-attachment technique (p = 0.04) and Time of fracture (p = 0.02) were statistically significant. The buccal and circumferential chamfer techniques were statistically similar (p > 0.05) and superior to the bonded-only group (p < 0.05). The first time of fracture was statistically superior to second time of fracture (p < 0.001). Conclusions: The use of fiber post is not necessary for the reinforcement of the tooth structure in re-attachment of endodontically treated teeth. When bonding a fractured fragment, the buccal or circumferential re-attachment techniques should be preferable in comparison with the simple re-attachment without any additional preparation. None of the techniques used for re-attachment restored the fracture strength of the intact teeth. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this in vitro study was to evaluate qualitatively the surface morphology of enamel bleached with 35% hydrogen peroxide (HP) followed by application of fluoridated agents. Forty intact pre molars were randomly distributed into four groups (n = 10), treated as follows: Group I (control group) remained stored in artificial saliva at 37 degrees C, Group II - 35% HP; Group III - 35% HP + acidulated fluoride (1.23%) and Group IV - 35% HP + neutral fluoride (2%). The experimental groups received three applications of bleaching gel and after the last application all specimens were polished. This procedure was repeated after 7 and 14 days, and during the intervals of applications, the specimens were stored in artificial saliva at 37 degrees C. Scanning electron microscopy (SEM) analysis showed superficial irregularities and porosities to varying degrees in bleached enamel compared to control group. Sample evaluation was made by attributing scores, and data were statistically analyzed using Kruskal-Wallis and Dunn tests (P < 0.05). SEM qualitative investigation demonstrated that 35% hydrogen peroxide affected human dental enamel morphology, producing porosities, depressions, and superficial irregularities at various degrees. These morphological changes were higher after the application of 1.23% acidulated fluoride gel. Microsc. Res. Tech. 74:512-516, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Objectives: The aims of the present study were to investigate whether irradiation with a CO(2) laser could prevent surface softening (i) in sound and (ii) in already softened enamel in vitro. Methods: 130 human enamel samples were obtained and polished with silicon carbide papers. They were divided into 10 groups (n = 13) receiving 5 different surface treatments: laser irradiation (L), fluoride (AmF/NaF gel) application (F), laser prior to fluoride (LF), fluoride prior to laser (FL), non-treated control (C); and submitted to 2 different procedures: half of the groups was acid-softened before surface treatment and the other half after. Immersion in 1% citric acid was the acid challenge. Surface microhardness (SMH) was measured at baseline, after softening and after treatment. Additionally, fluoride uptake in the enamel was quantified. The data were statistically analysed by two-way repeated measurements ANOVA and post hoc comparisons at 5% significance level. Results: When softening was performed either before or after laser treatment, the L group presented at the end of the experiments SMH means that were not significantly different from baseline (p = 0.8432, p = 0.4620). Treatment after softening resulted for all laser groups in statistically significant increase in SMH means as compared to values after softening (p < 0.0001). Enamel fluoride uptake was significantly higher for combined laser-fluoride treatment than in control (p < 0.0001). Conclusion: Irradiation of dental enamel with a CO(2) laser at 0.3J/cm(2) (5 mu s, 226 Hz) not only significantly decreased erosive mineral loss (97%) but also rehardened previously softened enamel in vitro. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background. In a pilot study, the authors aimed to determine the success rate of dental implants placed in patients who were positive for human immunodeficiency virus (HIV) and were receiving different regimens of highly active anti-retroviral therapy (HAART). They considered patients` levels of cluster of differentiation (CD) 4(+) cells and viral load, and they attempted to verify whether patients with baseline biochemical signs of bone mineral density loss could experience osseointegration impairment. Materials and Methods. One of the authors, a dentist, placed dental implants in the posterior mandibles of 40 volunteers, divided into three groups: one composed of HIV-positive patients receiving protease inhibitor (PI)-based HAART; a second composed of HIV-positive patients receiving nonnucleoside reverse transcriptase inhibitor based HAART (without PI); and a control group composed of HIV-negative participants. The authors assessed pen-implant health six and 12 months after implant loading. They analyzed the success of the implants in relation to CD4(+) cell counts, viral load and baseline pyridinoline and deoxypyridinoline values. Results. The authors followed 59 implants for 12 months after loading. Higher baseline levels of pyridinoline and deoxypyridinoline found in HIV-positive participants did not interfere with osseointegration after 12 months of follow-up. Average pen-implant bone loss after 12 months was 0.49 millimeters in group 1, 0.47 mm in group 2, and 0.55 mm in the control group. Conclusions. The placement of dental implants in HIV-positive patients is a reasonable treatment option, regardless of CD4(+) cell count, viral load levels and type of antiretroviral therapy. Longer, follow-up periods are necessary to ascertain the predictability of the long-term success of dental implants in these patients. Clinical Implications. Limited published scientific evidence is available to guide clinicians in regard to possible increased risks associated with dental implant placement in HIV-positive patients.
Resumo:
Oral squamous cell carcinoma (OSCC) may arise from potentially malignant oral lesions. All-trans retinoic acid (atRA), which plays a role in cell growth and differentiation, has been studied as a possible chemotherapeutic agent in the prevention of this progression. While the mechanism by which atRA suppresses cell growth has not been completely elucidated, it is known that homeobox genes are atRA targets. To determine if these genes are involved in the atRA-mediated OSCC growth inhibition, PCR array was performed to evaluate the expression of 84 homeobox genes in atRA-sensitive SCC-25 cells compared to atRA-resistant SCC-9 cells following 7 days with atRA treatment. Results showed that the expression of 8 homeobox genes was downregulated and expression of 4 was upregulated in SCC-25 cells but not in SCC-9 cells. Gene expression levels were confirmed for seven of these genes by RT-qPCR. Expression of three genes that showed threefold downregulation was evaluated in SCC-25 cells treated with atRA for 3, 5, and 7 days. Three different patterns of atRA-dependent gene expression were observed. ALX1 showed downregulation only on day 7. DLX3 showed reduced expression on day 3 and further reduced on clay 7. TLX1 showed downregulation only on days 5 and 7. Clearly the expression of homeobox genes is modulated by atRA in OSCC cell lines. However, the time course of this modulation suggests that these genes are not direct targets of atRA mediating OSCC growth suppression. Instead they appear to act as downstream effectors of atRA signaling. J. Cell. Biochem. 111: 1437-1444, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
The purpose of this study was to evaluate the characteristics of diseased root surfaces treated by the association of scaling and the application of Carisolv. Twenty-four uniradicular periodontally involved teeth were used in this study The teeth were divided randomly into three groups: eight teeth were scaled and root planed until there was a complete visible removal of calculus (group 1), Carisolv was applied on the root surfaces of eight teeth twice for 30 seconds before scaling with a sharp curette (group 2), and eight teeth received the same treatment as in group 2 but with a blunt curette (group 3). Specimens were examined using scanning electron microscopy The superficial aspect of the roots from group 1 presented scratches that mirrored the curette cutting edge, and the smear layer completely covered the surface. Root surfaces from groups 2 and 3 also presented a smear layer that covered the surface completely but it was somewhat smoother than group 1. The use of Carisolv as an adjunct to scaling and root planing presented no advantage for smear layer removal over scaling alone, suggesting that no benefit is obtained by the use of Carisolv during periodontal mechanical treatment. (Int J Periodontics Restorative Dent 2011;31:91-95.)
Resumo:
The objective of this study was to evaluate the effect of the ion exchange treatment on the R-curve behavior of a leucite-reinforced dental porcelain, testing the hypothesis that the ion exchange is able to improve the R-curve behavior of the porcelain studied. Porcelain disks were sintered, finely polished, and submitted to an ion exchange treatment with a KNO(3) paste. The R-curve behavior was assessed by fracturing the specimens in a biaxial flexure design after making Vickers indentations in the center of the polished surface with loads of 1.8, 3.1, 4.9, 9.8, 31.4, and 49.0 N. The results showed that the ion exchange process resulted in significant improvements in terms of fracture toughness and flexural strength as compared to the untreated material. Nevertheless, the rising R-curve behavior previously observed in the control group disappeared after the ion exchange treatment, i.e., fracture toughness did not increase with the increase in crack size for the treated group.
Resumo:
Dentin irradiation with erbium lasers has been reported to alter the composite resin bond to this treated surface. There is still a lack of studies reporting the effect of erbium lasers on dentin organic content and elucidating how laser treatment could interfere in the quality of the resin-dentin interface. This study aimed to evaluate the effect of erbium laser irradiation on dentin morphology and microtensile bond strength (lTBS) of an adhesive to dentin. Seventy-two dentin disks were divided into nine groups (n = 8): G1-Control (600-grit SiC paper); Er:YAG groups: G2-250 mJ/4 Hz; G3-200 mJ/4 Hz; G4-180 mJ/10 Hz; G5-160 mJ/10 Hz; Er, Cr:YSGG groups: G6-2 W/20 Hz; G7-2.5 W/20 Hz; G8-3 W/20 Hz; G9-4 W/20 Hz. Specimens were processed for cross-sectional analysis by scanning electron microscopy (SEM) (n = 3), transmission electron microscopy (TEM) (n = 2), and adhesive interface (n = 3). Forty-five dentin samples (n = 5) were restored and submitted to lTBS testing. ANOVA (alpha = 5%) revealed that G1 presented the highest lTBS values and irradiated groups did not differ from each other. TEM micrographs showed a superficial layer of denatured collagen fibrils. For SEM micrographs, it was possible to verify the laser effects extending to dentin subsurface presenting a rough aspect. Cross-sectional dentin micrographs of this hybridized surface revealed a pattern of modified tags with ringlike structures around it. This in vitro study showed that erbium laser irradiation interacts with the dental hard tissue resulting in a specific morphological pattern of dentin and collagen fibrils that negatively affected the bond strength to composite resin. Microsc. Res. Tech. 74:720-726, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Purpose: To evaluate in vitro the microshear bond strength of adhesive systems applied to dentin according to manufacturers` instructions, associated or not with a hydrophobic layer of unfilled resin. Materials and Methods: Six self-etching adhesives (Clearfil SE Bond, Kuraray Medical; AdheSE, lvoclar Vivadent; Xeno III, Dentsply; I Bond, Heraeus-Kulzer; Bond Force, Tokuyama; Futurabond DC, Voco) were tested. The labial dentin of sixty bovine incisors was exposed, and the teeth were divided into two groups according to the application or not of an extra hydrophobic resin layer (Scotchbond Multi Purpose Plus, bottle 3). Six composite cylinders (Filtek Z250, 3M ESPE) were built up on each treated surface. Specimens were stored in distilled water at 37 C for 24 h and then subjected to the microshear bond strength test in a universal testing machine at a crosshead speed of 0.5 mm/min. Microshear bond strength values were analyzed by 2-way ANOVA and Tukey`s post-hoc test. Failure mode was determined using a stereomicroscope under 20X magnification. Results: The application of the hydrophobic resin layer did not affect bond strength, except for AdheSE. However, the bond strengths with the hydrophobic layer were similar among the six tested systems (Clearfil: 17.1 +/- 7.9; AdheSE: 14.5 +/- 7.1; Xeno III: 12.8 +/- 7.7; I Bond: 9.5 +/- 5.8; Bond Force: 17.5 +/- 4.1; Futurabond: 7.7 +/- 2.3). When used as recommended by the manufacturers, Bond Force presented statistically higher bond strength than AdheSE and I Bond (p < 0.05) (Clearfil 10.4 +/- 4.9; AdheSE 1.6 +/- 1.6; Xeno III: 9.0 +/- 3.8; I Bond: 3.0 +/- 1.5; Bond Force: 14 +/- 3.9; Futurabond: 8.8 +/- 3.8). Failure mode was predominantly adhesive. Conclusion: The bond strength of the self-etching systems tested was not significantly affected by the application of a hydrophobic layer, but a significant improvement was observed in AdheSE.