386 resultados para PLANT SCIENCES
Resumo:
Previous anatomical studies have been restricted to the foliar aspects of Pilocarpus. However, no anatomical studies analyzing the foliar aspects of Pilocarpus in relation to related genera have been carried out. Therefore, the aim of this study was to identify characters for future taxonomic and phylogenetic studies in Rutaceae, particularly in Pilocarpus, and to discuss the characteristics associated with the simple or compound leaf condition for the group. The petiole and the leaf blade of 14 neotropical Rutaceae species were analyzed, and the following characteristics were observed in all leaves studied: stomata on both surfaces; secretory cavities, including mesophyll type; camptodromous-brochidodromous venation pattern; and free vascular cylinder in the basal region of the petiole. Additional promising characters were identified for future taxonomic and phylogenetic studies in the Rutaceae family, especially for the Pilocarpus genera.
Resumo:
New data on floral morphology, development, and vasculature in two Brazilian genera of the monocot family Velloziaceae (Pandanales) are used to explore the homologies of their unusual floral structures, especially the corona of Barbacenia and the corona-like appendages and multiple stamens of some Vellozia species. All Velloziaceae have epigynous flowers. Some species of Vellozia are polyandrous, and stamen number can be variable within species. In Vellozia jolyi, there is a single stamen opposite each sepal and a stamen fascicle (of three secondary stamens) opposite each petal. Each stamen possesses a single vascular bundle, and these are united into a single aggregate bundle in proximal regions of the fascicle. Stamens mature centripetally within each fascicle. The coronal appendages of both genera are closely associated with the stamens, but they share some vasculature with the tepals and develop late in ontogeny. The coronal organs cannot readily be homologized with any of the typical floral organs, but they show partial homology with both tepals and stamens. They are most readily interpreted as a late elaboration of the region between the petals and stamens associated with epigyny and the hypanthium.
Resumo:
During the process of lateral organ development after plant decapitation, cell division and differentiation occur in a balanced manner initiated by specific signaling, which triggers the reentrance into the cell cycle. Here, we investigated short-term variations in the content of some endogenous signals, such as auxin, cytokinins (Cks), and other mitogenic stimuli (sucrose and glutamate), which are likely correlated with the cell cycle reactivation in the axillary bud primordium of pineapple nodal segments. Transcript levels of cell cycle-associated genes, CycD2;1, and histone H2A were analyzed. Nodal segments containing the quiescent axillary meristem cells were cultivated in vitro during 24 h after the apex removal and de-rooting. From the moment of stem apex and root removal, decapitated nodal segment (DNS) explants showed a lower indol-3-acetic acid (IAA) concentration than control explants, and soon after, an increase of endogenous sucrose and iP-type Cks were detected. The decrease of IAA may be the primary signal for cell cycle control early in G1 phase, leading to the upregulation of CycD2;1 gene in the first h. Later, the iP-type Cks and sucrose could have triggered the progression to S-phase since there was an increase in H2A expression at the eighth h. DNS explants revealed substantial increase in Z-type Cks and glutamate from the 12th h, suggesting that these mitogens could also operate in promoting pineapple cell cycle progression. We emphasize that the use of non-synchronized tissue rather than synchronous cell suspension culture makes it more difficult to interpret the results of a dynamic cell division process. However, pineapple nodal segments cultivated in vitro may serve as an interesting model to shed light on apical dominance release and the reentrance of quiescent axillary meristem cells into the cell cycle.
Resumo:
The phylogenetic placement of Kuhlmanniodendron Fiaschi & Groppo (Achariaceae) within Malpighiales was investigated with rbcL sequence data. This genus was recently created to accommodate Carpotroche apterocarpa Kuhlm., a poorly known species from the rainforests of Espirito Santo, Brazil. One rbcL sequence was obtained from Kuhlmanniodendron and analyzed with 73 additional sequences from Malpighiales, and 8 from two closer orders, Oxalidales and Celastrales, all of which were available at Genbank. Phylogenetic analyses were carried out with maximum parsimony and Bayesian inference; bootstrap analyses were used in maximum parsimony to evaluate branch support. The results confirmed the placement of Kuhlmanniodendron together with Camptostylus, Lindackeria, Xylotheca, and Caloncoba in a strongly supported clade (posterior probability = 0.99) that corresponds with the tribe Lindackerieae of Achariaceae (Malpighiales). Kuhlmanniodendron also does not appear to be closely related to Oncoba (Salicaceae), an African genus with similar floral and fruit morphology that has been traditionally placed among cyanogenic Flacourtiaceae (now Achariaceae). A picrosodic paper test was performed in herbarium dry leaves, and the presence of cyanogenic glycosides, a class of compounds usually found in Achariaceae, was detected. Pollen morphology and wood anatomy of Kuhlmanniodendron were also investigated, but both pollen (3-colporate and microreticulate) and wood, with solitary to multiple vessels, scalariform perforation plates and other features, do not seem to be useful to distinguish this genus from other members of the Achariaceae and are rather common among the eudicotyledons as a whole. However, perforated ray cells with scalariform plates, an uncommon wood character, present in Kuhlmanniodendron are similar to those found in Kiggelaria africana (Pangieae, Achariaceae), but the occurrence of such cells is not mapped among the angiosperms, and it is not clear how homoplastic this character could be.
Resumo:
Laurencia marilzae is recorded for the first time from the western Atlantic Ocean; it was found in Laje de Santos Marine State Park, Sao Paulo, southeastern Brazil. The specimens were collected in the rocky subtidal zone from 7 to 15 m depth. The most distinctive characteristic of this species is the presence of corps en cerise in all cells of the thallus, including cortex, medulla, and trichoblasts. The phylogenetic position of the species was inferred by analysis of the chloroplast-encoded rbcL gene sequences from 43 taxa, using two other rhodomelacean taxa and two members of the Ceramiaceae as outgroups. Within the Laurencia assemblage, L. marilzae from Brazil and from the Canary Islands ( type locality) formed a distinctive lineage sister to all other Laurencia species analyzed. Male plants are described for the first time. This study expands the geographical distribution of L. marilzae to the western Atlantic Ocean.
Resumo:
We describe and illustrate the new species Actinocephalus verae (Eriocaulaceae: Paepalanthoideae). This species is endemic to the rocky outcrops of the Espinhacao range in Minas Gerais, Brazil. We make comparisons with Actinocephalus ithyphyllus and Actinocephalus ochrocephalus, the morphologically most similar species. The new species` morphological variation, habitat, geographic distribution, and conservation status are discussed.
Resumo:
Three new hermaphrodite species of Ocotea (Lauraceae) from the campos rupestres of Brazil are described and illustrated: Ocotea pumila, which is known from Bahia state; and Ocotea colophanthera and Ocotea rupestris both from Minas Gerais state. Their diagnostic features are pointed out, and a discussion of their relationships to other species of Ocotea is provided.
Resumo:
Chondracanthus chamissoi (C. Agardh) Kutzing is an economically important red seaweed with an extended latitudinal distribution along the south-east Pacific. Here we report on the seasonal in vitro germination of carpospores and tetraspores from four populations distributed from 27 to 41 degrees S on the Chilean coast. Our results show that both types of spores exhibited a different physiological behavior related to the geographic origin of the specimens. Germination occurred throughout the year for both spore types in the four populations. However, for the northern locations (Calderilla, La Herradura and Puerto Aldea) germination was higher in spring, while for the southern location (Lechagua), germination was higher in summer. The growth rate of carposporelings and tetrasporelings varied seasonally in ail locations studied, with higher growth in spring. Among all, carposporelings from Lechagua specimens reached the highest growth rates (9.3 +/- 0.2% d(-1)). However, spores from Herradura and P. Aldea had a good germination and SGR in all seasons and would be good candidates to start spores-based cultivation of this valuable resource in Chile. (C) 2009 Elsevier B.V. All rights reserved
Resumo:
Palisada flagellifera (Ceramiales, Rhodophyta) is recorded for the first time in the eastern Atlantic Ocean off Tenerife, La Gomera, La Palma and Fuerteventura, Canary Islands, Spain. The specimens were collected in 2006-2009 growing from the lower intertidal to subtidal zones to 2 m depth at sites exposed to wave action. The species possesses a palisade-like arrangement of cortical cells in cross section, lacks secondary pit connections between them, and has tetrasporangia produced by three fertile pericentral cells (the third and the fourth additional and the second that becomes fertile), and a right-angled arrangement of tetrasporangia. Gametangia were not observed. The phylogenetic relationships were inferred by analyses of the chloroplast-encoded rbcL gene sequences from 46 taxa. The Canarian and Brazilian P. flagellifera specimens formed a highly supported clade with a low level of genetic variation in the rbcL sequences (0.02-0.04%), confirming that they are the same taxonomic entity. This study expands the geographical distribution of P. flagellifera to the eastern Atlantic Ocean.
Resumo:
This Study evaluated the species-level taxonomy and phylogenetic relationship among Kumanoa species from Brazil with other regions of the world based on the plastid-encoded RUBISCO large Subunit gene (rhcL). Partial rbcL sequences were obtained for 11 Kulnanoa specimens. Eight species are recognised from Brazil on the basis of molecular and morphological data: seven previously described (K abilii, K ambignia, K. breviarticulata, K. cipoensis, K. equisetoidea, K. globospora and K procarpa) and a new species here proposed (K. amazonensis sp. nov. Necchi & Vis). The new species has reduced and dense whorls but differs from the two closest related species in lacking secondary fascicles. Previously proposed infrageneric categories were not supported by the molecular data. Species described and endemic (K. breviarticulata, K. cipoensis, K equiseloidea and K. procarpa) to Brazil are not grouped together but are variously related to other species from North America, Europe and Australasia. With the species recognised in this study using molecular and morphological data and those previously distinguished by morphology, 13 species of Kumanoa are Currently documented from Brazil.
Resumo:
Alcantarea (Bromeliaceae) has 26 species that are endemic to eastern Brazil, occurring mainly on gneiss-granitic rock outcrops (`inselbergs`). Alcantarea has great ornamental potential and several species are cultivated in gardens. Limited data is available in the literature regarding the leaf anatomical features of the genus, though it has been shown that it may provide valuable information for characterizing of Bromeliaceae taxa. In the present work, we employed leaf anatomy to better characterize the genus and understand its radiation into harsh environments, such as inselbergs. We also searched for characteristics potentially useful in phylogenetic analyses and in delimiting Alcantarea and Vriesea. The anatomical features of the leaves, observed for various Alcantarea species, are in accordance with the general pattern shown by other Bromeliaceae members. However, some features are notable for their importance for sustaining life on rock outcrops, such as: small epidermal thick-walled cells, uneven sinuous epidermal walls, hypodermis often differentiated into lignified layers with thick-walled cells, aquiferous hypodermis bearing collapsible cells, and the presence of well developed epicuticular stratum. Alcantarea leaves tend to show different shapes in the spongy parenchyma, and have chlorenchymatous palisade parenchyma arranged in more well-defined arches, when compared to Vriesea species from the same habitat.
Resumo:
(In vitro Propagation of Heliconia bihai L. from Zygotic Embryos). The internal morphology of embryos from immature and mature fruits of Hcliconia bihai (L.) L. cv. Lobster Claw Two was examined. Embryos were inoculated into MS media (full MS and 1/2 MS) and GA(1) (0.2.5 and 5 mg L(-1)) with either sucrose or glucose. These plantlets were then replicated and transferred to MS medium (full MS or 1/2 MS) with 0 or 2.5 mg L(-1) BAP and their multiplication was evaluated 30 and 45 days after inoculation. The genetic variability of the multiplied plants was estimated using isoenzyme analyses. The internal morphology of the mature embryos revealed their tissues to be in more advanced stages of differentiation than immature embryos. In the conversion phase, 85% of the inoculated embryos developed into plants in the 1/2 MS medium with sucrose, in contrast to only 41% of the embryos that were cultivated with glucose. In the multiplication phase, plants cultivated in 1/2 MS medium with 2.5 mg L(-1) BAP demonstrated more buds. Isoenzyme analyses showed pattern changes in terms of the color intensity and the migration of some of the bands. These results may be associated with differences in the ages of the mother plants and of the plantlets obtained in vitro.
Resumo:
Paepalanthus sect. Diphyomene has inflorescences arranged in umbels. The underlying bauplan seems however to be more complex and composed of several distinct subunits. Despite appearing superficially very similar, the morphology and anatomy of the inflorescences can supply useful information for the understanding of the phylogeny and taxonomy of the group. Inflorescences of Paepalanthus erectifolius, Paepalanthus flaccidus, Paepalanthus giganteus, and Paepalanthus polycladus were analyzed in regard to branching pattern and anatomy. In P. erectifolius, P. giganteus and P. polycladus the structure is a tribotryum, with terminal dibotryum, and with pherophylls bearing lateral dibotrya. In P. flaccidus, the inflorescence is a pleiobotryum, with terminal subunit, and without pherophylls. Secondary inflorescences may occur in all species without regular pattern. Especially when grown in sites without a pronounced seasonality, the distinction between enrichment zone (part of the same inflorescence) and new inflorescences may be obscured. The main anatomical features supplying diagnostic and phylogenetic information are as follows: (a) in the elongated axis, the thickness of the epidermal cell walls and the cortex size; (b) in the bracts, the quantity of parenchyma cells (c) in the scapes, the shape and the presence of a pith tissue. Therefore, P. sect. Diphyomene can be divided in two groups; group A is represented by P. erectifolius, P. giganteus and P. polycladus, and group B is represented by P. flaccidus. The differentiation is based in both, inflorescence structure and anatomy. Group A presents a life cycle and anatomical features similar to species of Actinocephalus. Molecular trees also point that these two groups are closely related. However, inflorescence morphology and blooming sequence are different. Species of group B present an inflorescence structure and anatomical features shared with many genera and species in Eriocaulaceae. The available molecular and morphology based phylogenies still do not allow a precise allocation of the group in the bulk of basal species of Paepalanthus collocated in P. sect. Variabiles. The characters described and used here supply however important information towards this goal. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
Crassulacean acid metabolism (CAM) confers crucial adaptations for plants living under frequent environmental stresses. A wide metabolic plasticity can be found among CAM species regarding the type of storage carbohydrate, organic acid accumulated at night and decarboxylating system. Consequently, many aspects of the CAM pathway control are still elusive while the impact of this photosynthetic adaptation on nitrogen metabolism has remained largely unexplored. In this study, we investigated a possible link between the CAM cycle and the nitrogen assimilation in the atmospheric bromeliad Tillandsia pohliana by simultaneously characterizing the diel changes in key enzyme activities and metabolite levels of both organic acid and nitrate metabolisms. The results revealed that T. pohliana performed a typical CAM cycle in which phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase phosphorylation seemed to play a crucial role to avoid futile cycles of carboxylation and decarboxylation. Unlike all other bromeliads previously investigated, almost equimolar concentrations of malate and citrate were accumulated at night. Moreover, a marked nocturnal depletion in the starch reservoirs and an atypical pattern of nitrate reduction restricted to the nighttime were also observed. Since reduction and assimilation of nitrate requires a massive supply of reducing power and energy and considering that T. pohliana lives overexposed to the sunlight, we hypothesize that citrate decarboxylation might be an accessory mechanism to increase internal CO(2) concentration during the day while its biosynthesis could provide NADH and ATP for nocturnal assimilation of nitrate. Therefore, besides delivering photoprotection during the day, citrate might represent a key component connecting both CAM pathway and nitrogen metabolism in T. pohliana: a scenario that certainly deserves further study not only in this species but also in other CAM plants that nocturnally accumulate citrate. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Catasetum fimbriatum plants cultivated in the absence of light exhibit continuous shoot growth leading to the formation of nodes and internodes. On the other hand, when these plants are incubated in the presence of light, shoot longitudinal growth is inhibited and pseudobulbs develop just below the shoot apical meristem. These facts provide evidence of a possible influence of light on mitotic cell division in the shoot apex as well as on pseudobulb initiation. The effects of light and dark on the interruption and/or maintenance of shoot apex mitotic activity and the subsequent formation of pseudobulbs in the sub-meristematic regions were investigated by means of histological and hormonal studies. The interruption of shoot apex development occurred around the 150th d of light incubation and seems to have resulted from the establishment of a strong storage sink in the region of the future pseudobulb, in detriment to the continuous activity of the shoot apical meristem. The reduced total cytokinins/IAA ratio in the apex, mainly due to high levels of IAA, could be a key factor in the interruption of cell divisions. Transfer to the dark brings about the resumption of shoot apex development of plants through the re-entrance of cells in the cell cycle which coincides with a significant increase in the total cytokinins/IAA ratio. (C) 2009 Elsevier GmbH. All rights reserved.