276 resultados para Dopaminergic system
Resumo:
Monoamines (noradrenaline (NA), adrenaline (AD), dopamine (DA) and serotonin (5-HT) are key neurotransmitters that are implicated in multiple physiological and pathological brain mechanisms, including control of respiration. The monoaminergic system is known to be widely distributed in the animal kingdom, which indicates a considerable degree of phylogenetic conservation of this system amongst vertebrates. Substantial progress has been made in uncovering the participation of the brain monoamines in the breathing regulation of mammals, since they are involved in the maturation of the respiratory network as well as in the modulation of its intrinsic and synaptic properties. On the other hand, for the non-mammalian vertebrates, most of the knowledge of central monoaminergic modulation in respiratory control, which is actually very little, has emerged from studies using anuran amphibians. This article reviews the available data on the role of brain monoaminergic systems in the control of ventilation in terrestrial vertebrates. Emphasis is given to the comparative aspects of the brain noradrenergic, adrenergic, dopaminergic and serotonergic neuronal groups in breathing regulation, after first briefly considering the distribution of monoaminergic neurons in the vertebrate brain. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Studies involving estrogen treatment of ovariectomized rats or mice have attributed to this hormone a neuroprotective effect on the substantia nigra pars compacta (SNpc) neurons. We investigated the effect of estradiol replacement in ovariectomized rats on the survival of dopaminergic mesencephalic cell and the integrity of their projections to the striatum after microinjections of 1 mu g of 6-hydroxydopamine (6-OHDA) into the right SNpc or medial forebrain bundle (MFB). Estradiol replacement did not prevent the reduction either in the striatal concentrations of DA and metabolites or in the number of nigrostriatal dopaminergic neurons following lesion with 1 mu g of 6-OHDA into the SNpc. Nevertheless, estradiol treatment reduced the decrease in striatal DA following injection of 1 mu g of 6-OHDA into the MFB. Results suggest therefore that estrogen protect nigrostriatal dopaminergic neurons against a 6-OHDA injury to the MFB but not the SNpc. This may be due to the distinct degree of lesions promoted in these different rat models of Parkinson`s disease.
Resumo:
There is evidence that nitric oxide plays a role in the neurotransmitter balance within the basal ganglia and in the pathology of Parkinson`s disease. In the present work we investigated in striatal 6-hydroxydopamine (6-OHDA) lesioned rats the effects of a nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine (L-NOARG), given systemically on both the dopaminergic (DA) neuronal loss and the neuronal NOS cell density. We analyzed the DA neuronal loss through tyrosine hydroxylase immunohistochemistry (TH). The nitrergic system was evaluated using an antibody against the neuronal NOS (nNOS) isoform. Treatment with the L-NOARG significantly reduced 6-OHDA-induced dopaminergic damage in the dorsal striatum, ventral substantia nigra and lateral globus pallidus, but had no effects in the dorsal substantia nigra and in the cingulate cortex. Furthermore, L-NOARG reduced 6-OHDA-induced striatal increase, and substantia nigra compacta decrease, in the density of neuronal nitric oxide synthase positive cells. These results suggest that nitric oxide synthase inhibition may decrease the toxic effects of 6-OHDA on dopaminergic terminals and on dopamine cell bodies in sub-regions of the SN and on neuronal nitric oxide synthase cell density in the rat brain. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study was to evaluate the bone repair along a mandibular body osteotomy after using a 2.0 miniplate system. Nine adult mongrel dogs were subjected to unilateral continuous defect through an osteotomy between the mandibular 3rd and 4th premolars. Two four-hole miniplates were placed in accordance with the Arbeitgeimeinschaft fur Osteosynthesefragen Manual. Miniplates adapted to the alveolar processes were fixed monocortically with 6.0-mm-length titanium alloy self-tapping screws, whereas miniplates placed near the mandible bases were fixed bicortically. At 2, 6 and 12 weeks, three dogs were sacrificed per period, and the osteotomy sites were removed, divided into three thirds (Tension Third, TT; Intermediary Third, IT; Compression Third, CT) and prepared for conventional and polarized light microscopy. At 6 weeks, while the CT repaired faster and showed bone union by woven bone formation, the TT and IT exhibited a ligament-like fibrous connective tissue inserted in, and connecting, newly formed woven bone overlying the parent lamellar bone edges. At 12 weeks, bone repair took place at all thirds. Histometrically, proportions of newly formed bone did not alter at TT, IT and CT, whereas significantly enhanced bone formation was observed for the 12-week group, irrespective of the third. The results demonstrated that although the method used to stabilize the mandibular osteotomy allowed bone repair to occur, differences in the dynamics of bone healing may take place along the osteotomy site, depending on the action of tension and compression forces generated by masticatory muscles.
Resumo:
P>The aim of this study was to validate an original portable device to measure attachment retention of implant overdentures both in the lab and in clinical settings. The device was built with a digital force measurement gauge (Imada) secured to a vertical wheel stand associated with a customized support to hold and position the denture in adjustable angulations. Sixteen matrix and patrix cylindrical stud attachments (Locator (R)) were randomly assigned as in vitro test specimens. Attachment abutments were secured in an implant analogue hung to the digital force gauge or to the load cell of a traction machine used as the gold standard (Instron Universal Testing Machine). Matrices were secured in a denture duplicate attached to the customized support, permitting reproducibility of their position on both pulling devices. Attachment retention in the axial direction was evaluated by measuring maximum dislodging force or peak load during five consecutive linear dislodgments of each attachment on both devices. After a wear simulation, retention was measured again at several time periods. The peak load measurements with the customized Imada device were similar to those obtained with the gold standard Instron machine. These findings suggest that the proposed portable device can provide accurate information on the retentive properties of attachment systems for removable dental prostheses.
Resumo:
Introduction: The purpose of this study was to evaluate the biocompatibility of the root canal filling system Epiphany/Resilon in connective tissue of rats. Methods: Fifteen rats were used, separated into 3 groups in accordance with its period of death (7, 21, 42 days). Four filled dentin tubes were implanted with the tested materials as follows: ERSP group, Epiphany/Resilon with Self-etch Primer; ER group, Epiphany/Resilon without primer; EG group, Endofill/gutta-percha points; and ET group, empty tube. After 7, 21, and 42 days, animals were killed, obtaining 5 samples per group. A grade from I-IV was used to graduate the inflammatory reaction. Results: Results showed that Epiphany/Resilon (ERSP and ER groups) induced a slight (II) inflammatory reaction after 42 days. However, in ER group, in which the self-etch primer was not applied, severe (IV) to moderate (III) inflammatory reactions were observed between 7 and 21 days. When compared with the EG and ET groups, it was observed that these groups presented tissue reaction ranging from slight (II, 7 and 21 days) to no inflammation (I, 42 days). Conclusions: Epiphany/Resilon root canal filling system presented satisfactory tissue reaction. It was biocompatible when tested in connective tissue of rats. (J Endod 2010;36:110-114)