258 resultados para high moisture
Resumo:
Purpose: To evaluate the effect of oxalate during total-etch bonding, under different dentin moisture conditions, over time. The null hypothesis tested was that microtensile bond strength (mu TBS) was not affected by oxalate treatment and dentin moisture during two evaluation periods. Methods: Extracted human third molars had their mid-coronal dentin exposed flat and polished with 600-grit SiC paper. The surfaces were etched with 35% phosphoric acid for 15 seconds, washed and blot dried. After etching, a 3% potassium oxalate gel was applied for 120 seconds, except for the control group (no desensitizer). The surface was then washed and left moist (Wet bonding) or air-dried for 30 seconds (Dry bonding). The surfaces were bonded with: (I) two 2-step etch-and-rinse adhesives: Single Bond (SB); Prime & Bond NT (PBNT) and (2) one 3-step etch-and-rinse adhesive: Scotchbond Multi Purpose (SBMP). Composite buildups were constructed incrementally with Tetric Ceram resin composite. Each increment was cured for 40 seconds. After storage in water for 24 hours or 1 year at 37 C, the specimens were prepared for mu TBS testing with a cross-sectional area of approximately 1 mm(2). They were then tested in tension in an Instron machine at 0.5 mm/minute. Data were analyzed by ANOVA and Student-Newman-Keuls at alpha = 0.05. Results: Application of potassium oxalate had no significant effect on the bond strengths of SBMP and PBNT, regardless of the surface moisture condition (P > 0.05). Conversely, reduced bond strengths were observed after oxalate treatment for SB in both moisture conditions, that being significantly lower when using a dry-bonding procedure (P < 0.05). Lower bond strength was obtained for PBNT when a dry-bonding technique was used, regardless of the oxalate treatment (P < 0.05). After aging the specimens for 1 year, bond strengths decreased. Smaller reductions were observed for SBMP, regardless of moisture conditions. For the WB technique, smaller reductions after 1 year were observed without oxalate treatment for SB and after oxalate treatment for PBNT. (Am J Dent 2010;23:137-141).
Resumo:
Rafacho A, Cestari TM, Taboga SR, Boschero AC, Bosqueiro JR. High doses of dexamethasone induce increased beta-cell proliferation in pancreatic rat islets. Am J Physiol Endocrinol Metab 296: E681-E689, 2009. First published January 21, 2009; doi:10.1152/ajpendo.90931.2008.-Activation of insulin signaling and cell cycle intermediates is required for adult beta-cell proliferation. Here, we report a model to study beta-cell proliferation in living rats by administering three different doses of dexamethasone (0.1, 0.5, and 1.0 mg/kg ip, DEX 0.1, DEX 0.5, and DEX 1.0, respectively) for 5 days. Insulin sensitivity, insulin secretion, and histomorphometric data were investigated. Western blotting was used to analyze the levels of proteins related to the control of beta-cell growth. DEX 1.0 rats, which present moderate hyperglycemia and marked hyperinsulinemia, exhibited a 5.1-fold increase in beta-cell proliferation and an increase (17%) in beta-cell size, with significant increase in beta-cell mass, compared with control rats. The hyperinsulinemic but euglycemic DEX 0.5 rats also showed a significant 3.6-fold increase in beta-cell proliferation. However, DEX 0.1 rats, which exhibited the lowest degree of insulin resistance, compensate for insulin demand by improving only islet function. Activation of the insulin receptor substrate 2/phosphatidylinositol 3-kinase/serine-threoninekinase/ribosomalprotein S6 kinase pathway, as well as protein retinoblastoma in islets from DEX 1.0 and DEX 0.5, but not in DEX 0.1, rats was also observed. Therefore, increasing doses of dexamethasone induce three different degrees of insulin requirement in living rats, serving as a model to investigate compensatory beta-cell alterations. Augmented beta-cell mass involves beta-cell hyperplasia and, to a lower extent, beta-cell hypertrophy. We suggest that alterations in circulating insulin and, to a lesser extent, glucose levels could be the major stimuli for beta-cell proliferation in the dexamethasone-induced insulin resistance.
Resumo:
In the present study we characterized titanium (Ti) surfaces submitted to different treatments and evaluated the response of osteoblasts derived from human alveolar bone to these surfaces. Five different surfaces were evaluated: ground (G), ground and chemical etched (G1-HF for 60 s), sand blasted (SB-Al2O3 particles 65 pm), sand blasted and chemical etched (SLA1-HF for 60 s and SLA2-HF for 13 s). Surface morphology was evaluated under SEM and roughness parameters by contact scanning instrument. The presence of Al2O3 was detected by EDS and the amount calculated by digital analyses. Osteoblasts, were cultured on these surfaces and it was evaluated: cell adhesion, proliferation, and viability, alkaline phosphatase activity, total protein content, and matrix mineralization formation. Physical and chemical treatments produced very different surface morphologies. Al2O3 residues were detected on SB and SLA2 surfaces. Only matrix mineralization formation was affected by different surface treatments, being increased on rough surface (SLA1) and reduced on surface with high amount of Al2O3 residues (SB). On the basis of these findings, it is possible to conclude that high concentration of residual Al2O3 negatively interfere with the process of matrix mineralization formation in contact with Ti implant surfaces. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 87A: 588-597, 2008