276 resultados para Mandibular glands
Resumo:
Objectives To compare the reliability of the disto-facial (DF) and mesio-lingual (ML) cusps of an anatomically correct zirconia (Y-TZP) crown system The research hypotheses tested were (1) fatigue reliability and failure mode are similar for the ML and DF cusps, (2) failure mode of one cusp does not affect the failure of the other Methods The average dimensions of a mandibular first molar crown were imported into CAD software, a tooth preparation was modelled by 1 5 mm marginal high reduction of proximal walls and occlusal surface by 2 0 mm The CAD-based tooth preparation was milled and used as a die to fabricate crowns (n = 14) with porcelain veneer on a 0 5 mm Y-TZP core. Crowns were cemented on composite reproductions of the tooth preparation The crowns were step-stress mouth motion fatigued with sliding (0 7 mm) a tungsten-carbide indenter of 6 25 mm diameter down on the inclines of either the DF or ML cusps Use level probability Weibull curve with use stress of 200 N and the reliability for completion of a mission of 50,000 cycles at 200 N load were calculated Results Reliability for a 200 N at 50,000 cycles mission was not different between tested cusps SEM imaging showed large cohesive failures within the veneer for the ML and smaller for the DF Fractures originated from the contact area regardless of the cusp loaded Conclusion No significant difference on fatigue reliability was observed between the DF compared to the ML cusp Fracture of one cusp did not affect the other (c) 2010 Elsevier Ltd All rights reserved
Resumo:
Purpose: The aim of this research was to evaluate the fatigue behavior and reliability of monolithic computer-aided design/computer-assisted manufacture (CAD/CAM) lithium disilicate and hand-layer-veneered zirconia all-ceramic crowns. Materials and Methods: A CAD-based mandibular molar crown preparation, fabricated using rapid prototyping, served as the master die. Fully anatomically shaped monolithic lithium disilicate crowns (IPS e.max CAD, n = 19) and hand-layer-veneered zirconia-based crowns (IPS e.max ZirCAD/Ceram, n = 21) were designed and milled using a CAD/CAM system. Crowns were cemented on aged dentinlike composite dies with resin cement. Crowns were exposed to mouth-motion fatigue by sliding a WC-indenter (r = 3.18 mm) 0.7 mm lingually down the distobuccal cusp using three different step-stress profiles until failure occurred. Failure was designated as a large chip or fracture through the crown. If no failures occurred at high loads (> 900 N), the test method was changed to staircase r ratio fatigue. Stress level probability curves and reliability were calculated. Results: Hand-layer-veneered zirconia crowns revealed veneer chipping and had a reliability of < 0.01 (0.03 to 0.00, two-sided 90% confidence bounds) for a mission of 100,000 cycles and a 200-N load. None of the fully anatomically shaped CAD/CAM-fabricated monolithic lithium disilicate crowns failed during step-stress mouth-motion fatigue (180,000 cycles, 900 N). CAD/CAM lithium disilicate crowns also survived r ratio fatigue (1,000,000 cycles, 100 to 1,000 N). There appears to be a threshold for damage/bulk fracture for the lithium disilicate ceramic in the range of 1,100 to 1,200 N. Conclusion: Based on present fatigue findings, the application of CAD/CAM lithium disilicate ceramic in a monolithic/fully anatomical configuration resulted in fatigue-resistant crowns, whereas hand-layer-veneered zirconia crowns revealed a high susceptibility to mouth-motion cyclic loading with early veneer failures. Int J Prosthodont 2010; 23: 434-442.
Resumo:
This study evaluated the stress levels at the core layer and the veneer layer of zirconia crowns (comprising an alternative core design vs. a standard core design) under mechanical/thermal simulation, and subjected simulated models to laboratory mouth-motion fatigue. The dimensions of a mandibular first molar were imported into computer-aided design (CAD) software and a tooth preparation was modeled. A crown was designed using the space between the original tooth and the prepared tooth. The alternative core presented an additional lingual shoulder that lowered the veneer bulk of the cusps. Finite element analyses evaluated the residual maximum principal stresses fields at the core and veneer of both designs under loading and when cooled from 900 degrees C to 25 degrees C. Crowns were fabricated and mouth-motion fatigued, generating master Weibull curves and reliability data. Thermal modeling showed low residual stress fields throughout the bulk of the cusps for both groups. Mechanical simulation depicted a shift in stress levels to the core of the alternative design compared with the standard design. Significantly higher reliability was found for the alternative core. Regardless of the alternative configuration, thermal and mechanical computer simulations showed stress in the alternative core design comparable and higher to that of the standard configuration, respectively. Such a mechanical scenario probably led to the higher reliability of the alternative design under fatigue.
Resumo:
Purpose: The objective of this study was to evaluate the stress on the cortical bone around single body dental implants supporting mandibular complete fixed denture with rigid (Neopronto System-Neodent) or semirigid splinting system (Barra Distal System-Neodent). Methods and Materials: Stress levels on several system components were analyzed through finite element analysis. Focusing on stress concentration at cortical bone around single body dental implants supporting mandibular complete fixed dentures with rigid ( Neopronto System-Neodent) or semirigid splinting system ( Barra Distal System-Neodent), after axial and oblique occlusal loading simulation, applied in the last cantilever element. Results: The results showed that semirigid implant splinting generated lower von Mises stress in the cortical bone under axial loading. Rigid implant splinting generated higher von Mises stress in the cortical bone under oblique loading. Conclusion: It was concluded that the use of a semirigid system for rehabilitation of edentulous mandibles by means of immediate implant-supported fixed complete denture is recommended, because it reduces stress concentration in the cortical bone. As a consequence, bone level is better preserved, and implant survival is improved. Nevertheless, for both situations the cortical bone integrity was protected, because the maximum stress level findings were lower than those pointed in the literature as being harmful. The maximum stress limit for cortical bone (167 MPa) represents the threshold between plastic and elastic state for a given material. Because any force is applied to an object, and there is no deformation, we can conclude that the elastic threshold was not surpassed, keeping its structural integrity. If the force is higher than the plastic threshold, the object will suffer permanent deformation. In cortical bone, this represents the beginning of bone resorption and/or remodeling processes, which, according to our simulated loading, would not occur. ( Implant Dent 2010; 19:39-49)
Resumo:
Osny Ferreira-Junior, Luciana Dorigatti de Avila, Marcelo Bonifacio da Silva Sampieri, Eduardo Dias-Ribeiro, Weiliang Chen, Song Fan. Impacted Lower Third Molar Fused with a Supernumerary Tooth-Diagnosis and Treatment Planning Using Cone-Beam Computed Tomography. International Journal of Oral Science, 1(4): 224-228, 2009 This paper reported a case of fusion between an impacted third molar and a supernumerary tooth, in which a surgical intervention was carried out, with the objective of removing the dental elements. The panoramic radiography was complemented by the Donovan`s radiographic technique; but because of the proximity of the dental element to the mandibular ramus, it was not possible to have a final fusion diagnosis. Hence, the Cone-Beam Computed Tomography-which provides precise three-dimensional information-was used to determinate the fusion diagnosis and also to help in the surgical planning. In this case report we observed that the periapical, occlusal and panoramic were not able to show details which could only be examined through the cone-beam computed tomography.
Resumo:
Objective: The objective of this study was to determine the expression of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) during apical periodontitis development. Methods: Using an experimental design of induced periapical lesions in rats and immunohistochemistry assay as investigative tool, the MMP-2 and MMP-9 expression and distribution were evaluated at 3, 7,14, 21, 30,60 and 90 days after coronary access and pulp exposure of the first left mandibular molar to the oral environment. Two blind observers scored the immunoreactivity. A semi-quantitative analysis was performed. Results: Except at day 3, MMP-2 and MMP-9 immunostaining was observed in all experimental periods. The MMP-2 (p = 0.004) and MMP-9 (p = 0.005) immunostaining was higher in the period between 7 and 21 days. They were mainly observed in cells surrounding the apical foramen and adjacent periapical areas. Cells into the hypercementosis areas were strongly stained while both osteoblasts and osteoclasts; presented discrete staining along of this study. No staining was observed on epithelial walls. At 30, 60 and 90 days, the subjacent connective tissue presented intense MMP-2 and MMP-9 immunostaining in mononuclear cells (suggestive of fibroblasts, macrophages, infiltrating neutrophils and lymphocytes). Conclusion: The results observed in this study suggest that MMP-2 and MMP-9 play a critical role in the development of inflammatory periapical lesions, probably involved in the extracellular matrix (ECM) degradation during the initial phase of the lesion development. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Ameloblastoma is a benign locally aggressive infiltrative odontogenic lesion. It is characterized by slow growth and painless swelling. The treatment for ameloblastoma varies from curettage to en bloc resection, and the reported recurrence rates after treatment are high; the safety margin of resection is important to avoid recurrence. Advances in technology brought about great benefits in dentistry; a new generation of computed tomography scanners and 3-dimensional images enhance the surgical planning and management of maxillofacial tumors. The development of new prototyping systems provides accurate 3D biomodels on which surgery can be simulated, especially in cases of ameloblastoma, in which the safety margin is important for treatment success. A case of mandibular follicular ameloblastoma is reported where a 3D biomodel was used before and during surgery.
Resumo:
This study evaluates the effect on post space debridement in oval-shaped canals of an experimental ultrasonic tip with oval section (Satelec) compared with a circular ultrasonic tip (KaVo). Thirty teeth with an oval-shaped canal were endodontically treated and obturated and then randomly divided into 3 groups (n = 10) according to the procedure used for post space debridement: Satelec tip, Largo #2 drill + KaVo file, and Largo #2 drill + water. Debris and dentin tubules were evaluated by assigning scores to scanning electron microscope post spaces images; lower scores corresponded to fewer debris and higher number of open tubules. The Satelec group showed significantly lower debris and open tubules scores than KaVo group (p < .05) and control group (p < .05), which differed significantly between each other (p < .05). Also the debris and open tubules scores in different post space regions differed significantly among the experimental groups (p < .001). The oval ultrasonic tip resulted in a better post space debridement than a circular ultrasonic tip in oval-shaped canals.
Resumo:
Disturbances of the dental development may result in anomalies, which may be apparent as soon as the child is born. Eruption cysts are rarely observed in neonates considering that at this stage of the child`s life teeth eruption is uncommon. Thus, the aim of this report is to describe a case of eruption cysts in a neonate. A male neonate was brought to the emergency service with the chief complaint of an elevated area on the anterior region of the inferior alveolar ridge. The lesion was clinically characterized as a compressive and floating swelling. Through a radiographic exam two mandibular primary incisors could be seen superficially located. Due to the patient`s age and the initial diagnosis of eruption cysts the conduct adopted was clinical surveillance. Forty-five days after the first visit the lesions had significantly decreased in size, and completely disappeared after 4 months. at that age, both mandibular central incisors were already in the oral cavity exhibiting small hypoplastic areas in the incisal edges. The clinical and radiographic follow-up of eruption cysts in neonates appears to be an adequate conduct without differing from that recommended for older children.
Resumo:
Despite the increasing utilization of all-ceramic crown systems, their mechanical performance relative to that of metal ceramic restorations (MCR) has yet to be determined. This investigation tested the hypothesis that MCR present higher reliability over two Y-TZP all-ceramic crown systems under mouth-motion fatigue conditions. A CAD-based tooth preparation with the average dimensions of a mandibular first molar was used as a master die to fabricate all restorations. One 0.5-mm Pd-Ag and two Y-TZP system cores were veneered with 1.5 mm porcelain. Crowns were cemented onto aged (60 days in water) composite (Z100, 3M/ESPE) reproductions of the die. Mouth-motion fatigue was performed, and use level probability Weibull curves were determined. Failure modes of all systems included chipping or fracture of the porcelain veneer initiating at the indentation site. Fatigue was an acceleration factor for all-ceramic systems, but not for the MCR system. The latter presented significantly higher reliability under mouth-motion cyclic mechanical testing.
Resumo:
The dorsal surface of the tongue of the bullfrog, Rana catesbeiana, has simple columnar epithelium with a few ciliated cells and goblet cells. The entire surface is covered with numerous filiform papillae and few fungiform. Filiform papillae have a simple columnar epithelium with secretory cells, while the fungiform have a sensory disc on their upper surface the lined by a stratified columnar epithelium with basal, peripheral, glandular and receptor cells. Over the dorsal lingual surface there are numerous winding tubular glands, which penetrate deeply into the muscle of the tongue, mingling with the fibers. The gland epithelium is cylindrical with secretory and supporting cells. The first are absolute on the basis of the gland and the latter are rare in the upper third. The ventral surface of the tongue is lined by a stratified epithelium, with the presence of goblet cells, with ciliated cells among them. Morphometrically, lingual glands varies in length, according to their location: shorter in the anterior region of the tongue (330 mu m) than in the posterior region (450 mu m). Secretory cells of the anterior lingual glands are smaller (1457.7 mm(3)) than the posterior ones (2645.9 mu m(3)). The same can be said of the cell nuclei, 130.0 mu m(3) for the anterior glands and 202.3 mu m(3) for the posterior ones. Secretory cells of the lingual glands contain substances rich in protein and neutral mucopolysaccharides, which characterize the seromucous type. Goblet cells of the dorsal and ventral surface epithelia secrete neutral mucopolysaccharides and proteins, and can be characterized as type G1 cells, and the supporting cells of the superficial glands of the fungiform papillae secrete a mucus rich in neutral mucopolysaccharides, sulfomucins and sialomucins.
Resumo:
For the purposes of this report, ""systemic disease"" will be interpreted as conditions that are spread out within the body rather than localized strictly to the tissues of the oral cavity. Since it would take many volumes to review all such conditions, the intent of the authors is to review a few examples of conditions where initial panoramic radiographic findings suggested widespread disease of significance enough to affect the quality of life and longevity of the patient.
Resumo:
Introduction: The aim of this study was to evaluate the root canal preparation in flat-oval canals treated with either rotary or self-adjusting file (SAF) by using micro-tomography analysis. Methods: Forty mandibular incisors were scanned before and after root canal instrumentation with rotary instruments (n = 20) or SAF (n = 20). Changes in canal volume, surface area, and cross-sectional geometry were compared with preoperative values. Data were compared by independent sample t test and chi(2) test between groups and paired sample t test within the group (alpha = 0.05). Results: Overall, area, perimeter, roundness, and major and minor diameters revealed no statistical difference between groups (P > .05). In the coronal third, percentage of prepared root canal walls and mean increases of volume and area were significantly higher with SAF (92.0%, 1.44 +/- 0.49 mm(3), 0.40 +/- 0.14 mm(2), respectively) than rotary instrumentation (62.0%, 0.81 +/- 0.45 mm(3), 0.23 +/- 0.15 mm2, respectively) (P < .05). SAF removed dentin layer from all around the canal, whereas rotary instrumentation showed substantial untouched areas. Conclusions: In the coronal third, mean increases of area and volume of the canal as well as the percentage of prepared walls were significantly higher with SAF than with rotary instrumentation. By using SAF instruments, flat-oval canals were homogenously and circumferentially prepared. The size of the SAF preparation in the apical third of the canal was equivalent to those prepared with #40 rotary file with a 0.02 taper. (J Endod 2011;37:1002-1007)
Resumo:
The Epiphany (TM) Sealer is a new dual-curing resin-based sealer and has been introduced as an alternative to gutta-percha and traditional root canal sealers. The canal filling is claimed to create a seal with the dentinal tubules within the root canal system producing a `monoblock` effect between the sealer and dentinal tubules. Therefore, considering the possibility to incorporate the others adhesive systems, it is important to study the bond strength of the resulting cement. Forty-eight root mandibular canines were sectioned 8-mm below CEJ. The dentine discs were prepared using a tapered diamond bur and irrigated with 1% NaOCl and 17% EDTA. Previous the application Epiphany (TM) Sealer, the Epiphany (TM) Primer, AdheSE, and One Up Bond F were applied to the root canal walls. The LED and QTH (Quartz Tungsten Halogen) were used to photo-activation during 45 s with power density of 400 and 720 mW/cm(2), respectively. The specimens were performed on a universal testing machine at a cross-head speed of 1 mm/min until bond failure occurred. The force was recorded and the debonding values were used to calculate Push-out bond strength. The analysis of variance (ANOVA) and Tukey`s post-hoc tests showed significant statistical differences (P < 0.05) to Epiphany (TM) Sealer/Epiphany (TM) Primer/QTH and EpiphanyTM Sealer/AdheSE/QTH, which had the highest mean values of bond strength. The efficiency of resin-based filling materials are dependent the type of light curing unit used including the power density, the polymerization characteristics of these resin-based filling materials, depending on the primer/adhesive used.
Resumo:
Objective. To evaluate the influence of shaft design on the shaping ability of 3 rotary nickel-titanium (NiTi) systems. Study design. Sixty curved mesial canals of mandibular molars were used. Specimens were scanned by spiral tomography before and after canal preparation using ProTaper, ProFile, and ProSystem GT rotary instruments. One-millimeter-thick slices were scanned from the apical end point to the pulp chamber. The cross-sectional images from the slices taken earlier and after canal preparation at the apical, coronal, and midroot levels were compared. Results. The mean working time was 137.22 +/- 5.15 s. Mean transportation, mean centering ratio, and percentage of area increase were 0.022 +/- 0.131 mm, 0.21 +/- 0.11, and 76.90 +/- 42.27%, respectively, with no statistical differences (P > .05). Conclusions. All instruments were able to shape curved mesial canals in mandibular molars to size 30 without significant errors. The differences in shaft designs seemed not to affect their shaping capabilities.