306 resultados para Distribution factor
Resumo:
Granulocyte-colony stimulating factor (G-CSF) is a current pharmacological approach to increase peripheral neutrophil counts after anti-tumor therapies. Pain is most relevant side effect of G-CSF in healthy volunteers and cancer patients. Therefore, the mechanisms of G-CSF-induced hyperalgesia were investigated focusing on the role of spinal mitogen-activated protein (MAP) kinases ERK (extracellular signal-regulated kinase). JNK (Jun N-terminal Kinase) and p38, and PI(3)K (phosphatidylinositol 3-kinase). G-CSF induced dose (30-300 ng/paw)-dependent mechanical hyperalgesia, which was inhibited by local post-treatment with morphine. This effect of morphine was reversed by naloxone (opioid receptor antagonist). Furthermore, G-CSF-induced hyperalgesia was inhibited in a dose-dependent manner by intrathecal pre-treatment with ERK (PD98059), JNK (SB600125), p38 (SB202190) or PI(3)K (wortmanin) inhibitors. The co-treatment with MAP kinase and PI(3)K inhibitors, at doses that were ineffective as single treatment, significantly inhibited G-CSF-induced hyperalgesia. Concluding, in addition to systemic opioids, peripheral opioids as well as spinal treatment with MAP kinases and PI(3)K inhibitors also reduce G-CSF-induced pain. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Gastrointestinal mucositis is a common side effect of cancer chemotherapy. Platelet-activating factor (PAF) is produced during gut inflammation. There is no evidence that PAF participates in antineoplastic-induced intestinal mucositis. This study evaluated the role of PAF in 5-fluorouracil (5-FU)-induced intestinal mucositis using a pharmacological approach and PAF receptor knockout mice (PAFR(-/-)). Wild-type mice or PAFR(-/-) mice were treated with 5-FU (450 mg/kg, i.p.). Other mice were treated with saline or BN52021 (20 mg/kg, s.c.), an antagonist of the PAF receptor, once daily followed by 5-FU administration. After the third day of treatment, animals were sacrificed and tissue samples from the duodenum were removed for morphologic evaluation. In addition, myeloperoxidase activity and the cytokine concentration were measured. 5-FU treatment decreased the duodenal villus height/crypt depth ratio, increased MPO activity, and increased the concentration of TNF-alpha, IL-1 beta and KC in comparison with saline-treated animals. In PAFR(-/-) mice and PAFR antagonist-treated mice, 5-FU-dependent intestinal damage was reduced and a decrease in duodenal villus height/crypt depth ratio was attenuated. However, the 5-FU-dependent increase in duodenum MPO activity was not affected. Without PAFR activation, 5-FU treatment did not increase the TNF-alpha, IL-1 beta and KC concentration. In conclusion, our study establishes the role of PAFR activation in 5-FU-induced intestinal mucositis. This study implicates treatment with PAFR antagonists as novel therapeutic strategy for this condition.
Resumo:
Severe dengue infection in humans causes a disease characterized by thrombocytopenia, increased levels of cytokines, increased vascular permeability, hemorrhage, and shock. Treatment is supportive. Activation of platelet-activating factor (PAF) receptor (PAFR) on endothelial cells and leukocytes induces increase in vascular permeability, hypotension, and production of cytokines. We hypothesized that activation of PAFR could account for the major systemic manifestations of dengue infection. Inoculation of adult mice with an adapted strain of Dengue virus caused a systemic disease, with several features of the infection in humans. In PAFR(-/-) mice, there was decreased thrombocytopenia, hemoconcentration, decreased systemic levels of cytokines, and delay of lethality, when compared with WT infected mice. Treatment with UK-74,505, an orally active PAFR antagonist, prevented the above-mentioned manifestations, as well as hypotension and increased vascular permeability, and decreased lethality, even when started 5 days after virus inoculation. Similar results were obtained with a distinct PAFR antagonist, PCA-4246. Despite decreased disease manifestation, viral loads were similar (PAFR(-/-)) or lower (PAFR antagonist) than in WT mice. Thus, activation of PAFR plays a major role in the pathogenesis of experimental dengue infection, and its blockade prevents more severe disease manifestation after infection with no increase in systemic viral titers, suggesting that there is no interference in the ability of the murine host to deal with the infection. PAFR antagonists are disease-modifying agents in experimental dengue infection.
Resumo:
Cholecystokinin (CCK) provides a meal-related signal that activates brainstem neurons, which have reciprocal interconnections with the hypothalamic paraventricular nucleus. Neurons that express corticotrophin-releasing factor (CRF) in the hypothalamus possess anorexigenic effects and are activated during endotoxaemia. This study investigated the effects of CCK(1) receptor blockade on lipopolysaccharide (LPS)-induced hypophagia and hypothalamic CRF neuronal activation. Male Wistar rats were pretreated with a specific CCK(1) receptor antagonist (devazepide; 1 mg kg(-1); I.P.) or vehicle; 30 min later they received LPS (100 mu g kg(-1); I.P.) or saline injection. Food intake, corticosterone responses and Fos-CRF and Fos-alpha-melanocyte-stimulating hormone (alpha-MSH) immunoreactivity in the hypothalamus and Fos-tyrosine hydroxylase immunoreactivity in the nucleus of the solitary tract (NTS) were evaluated. In comparison with saline treatment, LPS administration decreased food intake and increased plasma corticosterone levels, as well as the number of Fos-CRF and Fos-tyrosine hydroxylase double-labelled neurons in vehicle-pretreated rats; no change in Fos-alpha-MSH immunoreactivity was observed after LPS injection. In saline-treated animals, devazepide pretreatment increased food intake, but it did not modify other parameters compared with vehicle-pretreated rats. Devazepide pretreatment partly reversed LPS-induced hypophagia and Fos-CRF and brainstem neuronal activation. Devazepide did not modify the corticosterone and Fos-alpha-MSH responses in rats treated with LPS. In conclusion, the present data suggest that LPS-induced hypophagia is mediated at least in part by CCK effects, via CCK(1) receptor, on NTS and hypothalamic CRF neurons.
Resumo:
Adrenalectomy-induced hypophagia is associated with increased satiety-related responses, which involve neuronal activation of the nucleus of the solitary tract (NTS). Besides its effects on the pituitary-adrenal axis, corticotrophin-releasing factor (CRF) has been shown to play an important role in feeding behaviour, as it possesses anorexigenic effects. We evaluated feeding-induced CRF mRNA expression in the paraventricular nucleus (PVN) and the effects of pretreatment with CRF(2) receptor antagonist (Antisauvagine-30, AS30) on food intake and activation of NTS neurons in response to feeding in adrenalectomised (ADX) rats. Compared to the sham group, ADX increased CRF mRNA levels in the PVN of fasted animals, which was further augmented by refeeding. AS30 treatment did not affect food intake in the sham and ADX + corticosterone (B) groups; however, it reversed hypophagia in the ADX group. In vehicle-pretreated animals, refeeding increased the number of Fos and Fos/TH-immunoreactive neurons in the NTS in the sham, ADX and ADX + B groups, with the highest number of neurons in the ADX animals. Similarly to its effect on food intake, pretreatment with AS30 in the ADX group also reversed the increased activation of NTS neurons induced by refeeding while having no effect in the sham and ADX + B animals. The present results show that adrenalectomy induces an increase in CRF mRNA expression in the PVN potentiated by feeding and that CRF(2) receptor antagonist abolishes the anorexigenic effect and the increased activation of NTS induced by feeding in the ADX animals. These data indicate that increased activity of PVN CRF neurons modulates brainstem satiety-related responses, contributing to hypophagia after adrenalectomy. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
arginine-vasopressin in the parvocellular neurons of the hypothalamic paraventricular nucleus is known to play an important role in the control of the hypothalamo-pituitary-adrenal axis. In the present study, we verify plasma corticosterone levels, the distribution of glucocorticoid receptor- and arginine-vasopressin-positive neurons, and the co-localization of both glucocorticoid receptors and arginine-vasopressin in neurons in the anterior and medial parvocellular subdivisions of the paraventricular nucleus after manipulations of the hypothalamus-pituitary-adrenal axis. Normal, sham surgery, and adrenalectomized male rats were subjected to intraperitoneal injections of saline or dexamethasone to measure plasma corticosterone levels by a radioimmunoassay. We also examined arginine-vasopressin and glucocorticoid receptor immunofluorescence in sections from the paraventricular nucleus. Our results showed that the immunoreactivity of arginine-vasopressin neurons increased in the anterior parvocellular subdivision and decreased in the medial parvocellular subdivision from adrenalectomized rats treated with dexamethasone. On the other hand, we showed that the immunoreactivity of glucocorticoid receptors increased in the anterior and medial parvocellular subdivisions of these same animals. However, the immunoreactivity of glucocorticoid receptors is higher in the medial parvocellular than anterior parvocellular subdivision. The co-localization of arginine-vasopressin and glucocorticoid receptors was found only in the medial parvocellular subdivision. These findings indicate that glucocorticoids have direct actions on arginine-vasopressin-positive neurons in the medial parvocellular but not anterior parvocellular subdivision. There is a differentiated pattern of arginine-vasopressin-positive neuron expression between the anterior and medial parvocellular subdivisions. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Several studies suggest that hypothalamic cocaine- and amphetamine-regulated transcript (CART) may interact with the hypothalamic-pituitary-adrenal (HPA) axis in the control of neuroendocrine function and may also participate in cardiovascular regulation. Therefore, this study aimed to evaluate, in experimental models of isotonic (I-EVE) and hypertonic (H-EVE) extracellular volume expansion and water deprivation (WD), the activation of CART- and corticotrophin releasing factor (CRF)-immunoreactive neurons, as well as the relative expression of CART and CRF mRNAs in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Both H-EVE (0.30M NaCl, 2mL/100g of body weight, in 1 minute) and 24 hours of WD significantly increased plasma sodium concentrations, producing, respectively, either an increase or a decrease in extracellular volume. I-EVE (0.15M NaCl, 2mL/100g of body weight, in 1 minute) evoked a significant increase in the circulating volume accompanied by unaltered plasma concentrations of sodium. CART-expressing neurons of both magnocellular and parvocellular hypothalamic divisions were activated to produce Fos in response to H-EVE but not in response to I-EVE. Furthermore, increased expression of CART mRNA was found in the PVN of H-EVE but not I-EVE rats. These data show for the first time that EVE not only activates hypothalamic CRF neurons but also increases CRF mRNA expression in the PVN. In contrast, WD increases the number of CART-immunoreactive neurons activated to produce Fos in the PVN and SON but does not change the number of neurons double labeled for Fos and CRF or expression of CRF mRNA in the PVN. These findings provided new insights into the participation of CART in diverse processes within the PVN and SON, including its possible involvement in activation of the HPA axis and cardiovascular regulation in response to changes in extracellular volume and osmolality. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Corticotrophin-releasing factor (CRF) and alpha-melanocyte-stimulating hormone (alpha-MSH), both of which are synthesized by hypothalamic neurons, play an essential role in the control of energy homeostasis. Neuroendocrine and behavioural responses induced by lipopolyssacharide (LPS) have been shown to involve prostaglandin-mediated pathways. This study investigated the effects of prostaglandin on CRF and alpha-MSH neuronal activities in LPS-induced anorexia. Male Wistar rats were pretreated with indomethacin (10 mg kg(-1); i.p.) or vehicle; 15 min later they received LPS (500 mu g kg(-1); i.p.) or saline injection. Food intake, hormone responses and Fos-CRF and Fos-alpha-MSH immunoreactivity in the paraventricular and arcuate nuclei, respectively, were evaluated. In comparison with saline treatment, LPS administration induced lower food intake and increased plasma ACTH and corticosterone levels, as well as an increase in Fos-CRF and Fos-alpha-MSH double-labelled neurons in vehicle-pretreated rats. In contrast, indomethacin treatment partly reversed the hypophagic effect, blunted the hormonal increase and blocked the Fos-CRF and Fos-alpha-MSH hypothalamic double labelling increase in response to the LPS stimulus. These data demonstrate that the activation of pro-opiomelanocortin and CRF hypothalamic neurons following LPS administration is at least partly mediated by the prostaglandin pathway and is likely to be involved in the modulation of feeding behaviour during endotoxaemia.
Resumo:
Atrial mechanoreceptors, sensitive to stretch, contribute in regulating heart rate and intravascular volume. The information from those receptors reaches the nucleus tractus solitarius and then the paraventricular nucleus (PVN), known to have a crucial role in the regulation of cardiovascular function. Neurons in the PVN synthesize CRF, AVP, and oxytocin (OT). Stimulation of atrial mechanoreceptors was performed in awake rats implanted with a balloon at the junction of the superior vena cava and right atrium. Plasma ACTH, AVP, and OT concentrations and Fos, CRF, AVP, and OT immunolabeling in the PVN were determined after balloon inflation in hydrated and water-deprived rats. The distension of the balloon increased the plasma ACTH concentrations, which were higher in water-deprived than in hydrated rats (P < 0.05). In addition, the distension in the water-deprived group decreased plasma AVP concentrations (P < 0.05), compared with the respective control group. The distension increased the number of Fos- and double-labeled Fos/CRF neurons in the parvocellular PVN, which was higher in the water-deprived than in the hydrated group (P < 0.01). There was no difference in the Fos expression in magnocellular PVN neurons after distension in hydrated and water-deprived groups, compared with respective controls. In conclusion, parvocellular CRF neurons showed an increase of Fos expression induced by stimulation of right atrial mechanoreceptors, suggesting that CRF participates in the cardiovascular reflex adjustments elicited by volume loading. Activation of CRF neurons in the PVN by cardiovascular reflex is affected by osmotic stimulation.
Resumo:
Inflammatory and infectious processes evoke neuroendocrine and behavioral changes known as acute-phase response that includes activation of the hypothalamo-pituitary-adrenal (HPA) axis and reduction of food intake. Besides its action as the most important ACTH secretagogue, corticotrophin-releasing factor (CRF), synthesized in the paraventricular nucleus (PVN), is also involved in the control of food intake. Alpha-melanocyte stimulating hormone (alpha-MSH) in the arcuate nucleus also plays a role in the energy homeostasis, possessing anorexigenic effects. To investigate the participation of neuropeptides involved in the regulation of food intake during endotoxemia, we administrated lipopolysaccharide (LPS) in sham-operated and adrenalectomized (ADX) male Wistar rats to evaluate food intake, hormone responses and Fos-CRF and Fos-alpha-MSH immunoreactivity in the PVN and arcuate nucleus, as well as CRF and POW mRNA expression in these hypothalamic nuclei. In sham-operated rats, treatment with LPS (100 mu g/kg) showed lower food intake, higher plasma ACTH and corticosterone levels, as well as an increase in Fos-CRF double labeled neurons and CRF mRNA expression in the PVN, with no changes in Fos-alpha-MSH immunoreactivity and POW mRNA expression in the arcuate nucleus, compared to saline treated rats. After LPS treatment, ADX rats showed further increase in plasma ACTH levels, marked decrease of food intake, higher Fos-CRF immunoreactive neurons in the PVN and CRF mRNA expression, as well as an increase in Fos-alpha-MSH immunoreactivity and POW mRNA expression in the arcuate nucleus, compared to sham-operated rats treated with LPS. In conclusion, the present data indicate that the marked hypophagia during endotoxemia following ADX is associated with an increased activation of CRF and POW neurons in the hypothalamus and an increased mRNA expression of these neuropeptides. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Epidermal growth factor can activate several signaling pathways, leading to proliferation, differentiation, and tumorigenesis of epithelial tissues by binding with its receptor. The EGF protein is involved in nervous system development, and polymorphisms in the EGF gene on chromosome band 4q25 are associated with brain cancers. The purpose of this study was to investigate the association between the single-nucleotide polymorphism of EGF + 61 G/A and extraaxial brain tumors in a population of the southeast of Brazil. We analyzed the genotype distribution of this polymorphism in 90 patients and 100 healthy subjects, using the polymerase chain reaction restriction fragment length polymorphism technique. Comparison of genotype distribution revealed a significant difference between patients and control subjects (P < 0.001). The variant genotypes of A/G and G/G were associated with a significant increase of the risk of tumor development, compared with the homozygote A/A (P < 0.0001). When the analyses were stratified, we observed that the genotype GIG was more frequent in female patients (P = 0.021). The same genotype was observed more frequently in patients with low-grade tumors (P = 0.001). Overall survival rates did not show statistically significant differences. Our data suggest that the EGF A61 G polymorphism can be associated with susceptibility to development of these tumors. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Epidermal growth factor (EGF) plays an important role in cancer. A functional single nucleotide polymorphism (SNP) in the 5`-untranslated region of the EGF gene (+61 A>G) may influence its expression and contribute to cancer predisposition and aggressiveness. Aiming to investigate the role of EGF +61 A>G in the susceptibility to glioma and its prognosis, we performed a case-control study with 165 patients and 200 healthy controls from Brazil. Comparisons of genotype distributions and allele frequencies did not reveal any significant differences between the groups. The mean overall survival was 9.2 months for A/A, 8.2 months for A/G, and 7.7 months for GIG. When survival curves were plotted we found that the +61G allele is associated with poor overall survival (p=0.023) but not with disease-free survival (p=0.527). Our data suggest that, although there is no association between the EGF +61 A>G genotype and glioma susceptibility, this SNP is associated with shorter overall survival of glioma patients in the Brazilian population. Nevertheless, future studies utilizing a larger series are essential for a definitive conclusion. (Int J Biol Markers 2009; 24: 277-81)
Resumo:
Hemoglobin profile studies have been carried out in four samples from different districts of Porto Velho (Rondonia State) in the western Amazonian region of Brazil: Candelaria, Bate Estaca, Hemeron (at the State Blood Bank), and Sao Carlos. Samples from 337 unrelated individuals were collected during medical and paramedical team visits by professionals from the Instituto de Pesquisa em Patologia Tropical and the Centro de Pesquisa em Patologias Tropicais (both research institutes in tropical diseases). The aim of this study is to assess the frequency of alleles in the hemoglobin system, mainly alleles HB*A, *S, and *E. The overall phenotype frequencies were FIB A,S = 0.025, HB A,E = 0.006, and HB A,A = 0.969. Samples from the blood bank subjects and samples from the homogeneous areas of Silo Carlos and Candelaria plus Bate Estaca have a chi-square of heterogeneity of 6.383 (p = 0.041) and 8.406 (p = 0.015), respectively. The allele frequencies (HB*A = 0.984, HB*S = 0.012, and HB*E = 0.003) do not significantly differ from frequencies found in other Brazilian regions.
Resumo:
Fentanyl is used in obstetrical practice to promote analgesia and anesthesia during labor and in cesarean delivery, with rapid and short-term effects. To determine fentanyl concentrations in maternal plasma, in the placental intervillous space, and in the umbilical artery and vein in term pregnant women. Ten healthy pregnant women underwent epidural anesthesia with fentanyl plus bupivacaine and lidocaine, and fentanyl concentrations were determined in the various maternal and fetal compartments, including the placental intervillous space, which has not been previously studied in the literature. The ratios of fentanyl concentrations in the various maternal and fetal compartments revealed an 86% rate of placental fentanyl transfer. The highest fentanyl concentrations were detected in the placental intervillous space, being 2.19 times higher than in maternal plasma, 2.8 times higher than in the umbilical vein and 3.6 times higher than in the umbilical artery, with no significant differences between the umbilical vein and artery, demonstrating that there was no drug uptake by fetal tissues nor metabolism of the drug by the fetus despite the high rates of placental transfer. The present study demonstrated that the placental intervillous space acted as a site of fentanyl deposit, a fact that may be explained by two hypotheses: (1) the blood collected from the placental intervillous space is arterial and, according to some investigators, the arterial plasma concentrations of the drugs administered to patients undergoing epidural anesthesia are higher than the venous concentrations, and (2) a possible role of P-glycoprotein (P-gp).
Resumo:
The aim of this study is to determine the concentrations of lidocaine and its metabolite, monoethylglycine xylidide (MEGX), and of the enantiomers of bupivacaine in maternal and fetal compartments. Ten healthy pregnant women were submitted to epidural anesthesia. Drug concentrations were determined in the maternal vein, fetal umbilical artery and vein, and the placental intervillous space. The highest concentrations of the bupivacaine enantiomers lidocaine and of lidocaine and of its MEGX metabolite were detected in maternal plasma and in the placental intervillous space. The placental transfer was 33% for the (+)-(R)-bupivacaine enantiomer and 31% for the (-)-(S)-bupivacaine enantiomer. For lidocaine and its MEGX metabolite, respective placental transfers were 60% and 43%. Lidocaine concentration in the fetal umbilical vein was 1.46 times higher than in the fetal umbilical artery. The highest concentrations of lidocaine and its metabolite and of the enantiomers of bupivacaine were detected in the placental intervillous space. The higher lidocaine concentrations in the fetal umbilical vein than in the fetal umbilical artery suggest that there was tissue uptake of the drug or drug metabolization by the fetus.