275 resultados para COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two fundamental processes usually arise in the production planning of many industries. The first one consists of deciding how many final products of each type have to be produced in each period of a planning horizon, the well-known lot sizing problem. The other process consists of cutting raw materials in stock in order to produce smaller parts used in the assembly of final products, the well-studied cutting stock problem. In this paper the decision variables of these two problems are dependent of each other in order to obtain a global optimum solution. Setups that are typically present in lot sizing problems are relaxed together with integer frequencies of cutting patterns in the cutting problem. Therefore, a large scale linear optimizations problem arises, which is exactly solved by a column generated technique. It is worth noting that this new combined problem still takes the trade-off between storage costs (for final products and the parts) and trim losses (in the cutting process). We present some sets of computational tests, analyzed over three different scenarios. These results show that, by combining the problems and using an exact method, it is possible to obtain significant gains when compared to the usual industrial practice, which solve them in sequence. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel mathematical framework inspired on Morse Theory for topological triangle characterization in 2D meshes is introduced that is useful for applications involving the creation of mesh models of objects whose geometry is not known a priori. The framework guarantees a precise control of topological changes introduced as a result of triangle insertion/removal operations and enables the definition of intuitive high-level operators for managing the mesh while keeping its topological integrity. An application is described in the implementation of an innovative approach for the detection of 2D objects from images that integrates the topological control enabled by geometric modeling with traditional image processing techniques. (C) 2008 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Security administrators face the challenge of designing, deploying and maintaining a variety of configuration files related to security systems, especially in large-scale networks. These files have heterogeneous syntaxes and follow differing semantic concepts. Nevertheless, they are interdependent due to security services having to cooperate and their configuration to be consistent with each other, so that global security policies are completely and correctly enforced. To tackle this problem, our approach supports a comfortable definition of an abstract high-level security policy and provides an automated derivation of the desired configuration files. It is an extension of policy-based management and policy hierarchies, combining model-based management (MBM) with system modularization. MBM employs an object-oriented model of the managed system to obtain the details needed for automated policy refinement. The modularization into abstract subsystems (ASs) segment the system-and the model-into units which more closely encapsulate related system components and provide focused abstract views. As a result, scalability is achieved and even comprehensive IT systems can be modelled in a unified manner. The associated tool MoBaSeC (Model-Based-Service-Configuration) supports interactive graphical modelling, automated model analysis and policy refinement with the derivation of configuration files. We describe the MBM and AS approaches, outline the tool functions and exemplify their applications and results obtained. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular neural networks (CNNs) have locally connected neurons. This characteristic makes CNNs adequate for hardware implementation and, consequently, for their employment on a variety of applications as real-time image processing and construction of efficient associative memories. Adjustments of CNN parameters is a complex problem involved in the configuration of CNN for associative memories. This paper reviews methods of associative memory design based on CNNs, and provides comparative performance analysis of these approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ubiquitous computing aims at providing services to users in everyday environments such as the home. One research theme in this area is that of building capture and access applications which support information to be recorded ( captured) during a live experience toward automatically producing documents for review (accessed). The recording demands instrumented environments with devices such as microphones, cameras, sensors and electronic whiteboards. Since each experience is usually related to many others ( e. g. several meetings of a project), there is a demand for mechanisms supporting the automatic linking among documents relative to different experiences. In this paper we present original results relative to the integration of our previous efforts in the Infrastructure for Capturing, Accessing, Linking, Storing and Presenting information (CALiSP). Ubiquitous computing aims at providing services to users in everyday environments such as the home. One research theme in this area is that of building capture and access applications which support information to be recorded (captured) during a live experience toward automatically producing documents for review (accessed). The recording demands instrumented environments with devices such as microphones, cameras, sensors and electronic whiteboards. Since each experience is usually related to many others (e.g. several meetings of a project), there is a demand for mechanisms supporting the automatic linking among documents relative to different experiences. In this paper we present original results relative to the integration of our previous efforts in the Infrastructure for Capturing, Accessing, Linking, Storing and Presenting information (CALiSP).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model trees are a particular case of decision trees employed to solve regression problems. They have the advantage of presenting an interpretable output, helping the end-user to get more confidence in the prediction and providing the basis for the end-user to have new insight about the data, confirming or rejecting hypotheses previously formed. Moreover, model trees present an acceptable level of predictive performance in comparison to most techniques used for solving regression problems. Since generating the optimal model tree is an NP-Complete problem, traditional model tree induction algorithms make use of a greedy top-down divide-and-conquer strategy, which may not converge to the global optimal solution. In this paper, we propose a novel algorithm based on the use of the evolutionary algorithms paradigm as an alternate heuristic to generate model trees in order to improve the convergence to globally near-optimal solutions. We call our new approach evolutionary model tree induction (E-Motion). We test its predictive performance using public UCI data sets, and we compare the results to traditional greedy regression/model trees induction algorithms, as well as to other evolutionary approaches. Results show that our method presents a good trade-off between predictive performance and model comprehensibility, which may be crucial in many machine learning applications. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a symplectic chain with a non-local form of coupling by means of a standard map lattice where the interaction strength decreases with the lattice distance as a power-law, in Such a way that one can pass continuously from a local (nearest-neighbor) to a global (mean-field) type of coupling. We investigate the formation of map clusters, or spatially coherent structures generated by the system dynamics. Such clusters are found to be related to stickiness of chaotic phase-space trajectories near periodic island remnants, and also to the behavior of the diffusion coefficient. An approximate two-dimensional map is derived to explain some of the features of this connection. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show a scenario of a two-frequeney torus breakdown, in which a global bifurcation occurs due to the collision of a quasi-periodic torus T(2) with saddle points, creating a heteroclinic saddle connection. We analyze the geometry of this torus-saddle collision by showing the local dynamics and the invariant manifolds (global dynamics) of the saddle points. Moreover, we present detailed evidences of a heteroclinic saddle-focus orbit responsible for the type-if intermittency induced by this global bifurcation. We also characterize this transition to chaos by measuring the Lyapunov exponents and the scaling laws. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this note we investigate the influence of structural nonlinearity of a simple cantilever beam impacting system on its dynamic responses close to grazing incidence by a means of numerical simulation. To obtain a clear picture of this effect we considered two systems exhibiting impacting motion, where the primary stiffness is either linear (piecewise linear system) or nonlinear (piecewise nonlinear system). Two systems were studied by constructing bifurcation diagrams, basins of attractions, Lyapunov exponents and parameter plots. In our analysis we focused on the grazing transitions from no impact to impact motion. We observed that the dynamic responses of these two similar systems are qualitatively different around the grazing transitions. For the piecewise linear system, we identified on the parameter space a considerable region with chaotic behaviour, while for the piecewise nonlinear system we found just periodic attractors. We postulate that the structural nonlinearity of the cantilever impacting beam suppresses chaos near grazing. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a 2D parameter space, by using nine experimental time series of a Clitia`s circuit, we characterized three codimension-1 chaotic fibers parallel to a period-3 window. To show the local preservation of the properties of the chaotic attractors in each fiber, we applied the closed return technique and two distinct topological methods. With the first topological method we calculated the linking, numbers in the sets of unstable periodic orbits, and with the second one we obtained the symbolic planes and the topological entropies by applying symbolic dynamic analysis. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We revisit the non-dissipative time-dependent annular billiard and we consider the chaotic dynamics in two planes of conjugate variables in order to describe the behavior of the growth, or saturation, of the mean velocity of an ensemble of particles. We observed that the changes in the 4-d phase space occur without changing any parameter. They occur depending on where the initial conditions start. The emerging KAM islands interfere in the behavior of the particle dynamics especially in the Fermi acceleration mechanism. We show that Fermi acceleration can be suppressed, without dissipation, even considering the non-dissipative energy context. (C) 2011 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Texture is one of the most important visual attributes used in image analysis. It is used in many content-based image retrieval systems, where it allows the identification of a larger number of images from distinct origins. This paper presents a novel approach for image analysis and retrieval based on complexity analysis. The approach consists of a texture segmentation step, performed by complexity analysis through BoxCounting fractal dimension, followed by the estimation of complexity of each computed region by multiscale fractal dimension. Experiments have been performed with MRI database in both pattern recognition and image retrieval contexts. Results show the accuracy of the method and also indicate how the performance changes as the texture segmentation process is altered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper applies the concepts and methods of complex networks to the development of models and simulations of master-slave distributed real-time systems by introducing an upper bound in the allowable delivery time of the packets with computation results. Two representative interconnection models are taken into account: Uniformly random and scale free (Barabasi-Albert), including the presence of background traffic of packets. The obtained results include the identification of the uniformly random interconnectivity scheme as being largely more efficient than the scale-free counterpart. Also, increased latency tolerance of the application provides no help under congestion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a novel approach for multispectral image contextual classification by combining iterative combinatorial optimization algorithms. The pixel-wise decision rule is defined using a Bayesian approach to combine two MRF models: a Gaussian Markov Random Field (GMRF) for the observations (likelihood) and a Potts model for the a priori knowledge, to regularize the solution in the presence of noisy data. Hence, the classification problem is stated according to a Maximum a Posteriori (MAP) framework. In order to approximate the MAP solution we apply several combinatorial optimization methods using multiple simultaneous initializations, making the solution less sensitive to the initial conditions and reducing both computational cost and time in comparison to Simulated Annealing, often unfeasible in many real image processing applications. Markov Random Field model parameters are estimated by Maximum Pseudo-Likelihood (MPL) approach, avoiding manual adjustments in the choice of the regularization parameters. Asymptotic evaluations assess the accuracy of the proposed parameter estimation procedure. To test and evaluate the proposed classification method, we adopt metrics for quantitative performance assessment (Cohen`s Kappa coefficient), allowing a robust and accurate statistical analysis. The obtained results clearly show that combining sub-optimal contextual algorithms significantly improves the classification performance, indicating the effectiveness of the proposed methodology. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present parallel algorithms on the BSP/CGM model, with p processors, to count and generate all the maximal cliques of a circle graph with n vertices and m edges. To count the number of all the maximal cliques, without actually generating them, our algorithm requires O(log p) communication rounds with O(nm/p) local computation time. We also present an algorithm to generate the first maximal clique in O(log p) communication rounds with O(nm/p) local computation, and to generate each one of the subsequent maximal cliques this algorithm requires O(log p) communication rounds with O(m/p) local computation. The maximal cliques generation algorithm is based on generating all maximal paths in a directed acyclic graph, and we present an algorithm for this problem that uses O(log p) communication rounds with O(m/p) local computation for each maximal path. We also show that the presented algorithms can be extended to the CREW PRAM model.