301 resultados para Activity Index
Resumo:
The stock market suffers uncertain relations throughout the entire negotiation process, with different variables exerting direct and indirect influence on stock prices. This study focuses on the analysis of certain aspects that may influence these values offered by the capital market, based on the Brazil Index of the Sao Paulo Stock Exchange (Bovespa), which selects 100 stocks among the most traded on Bovespa in terms of number of trades and financial volume. The selected variables are characterized by the companies` activity area and the business volume in the month of data collection, i.e. April/2007. This article proposes an analysis that joins the accounting view of the stock price variables that can be influenced with the use of multivariate qualitative data analysis. Data were explored through Correspondence Analysis (Anacor) and Homogeneity Analysis (Homals). According to the research, the selected variables are associated with the values presented by the stocks, which become an internal control instrument and a decision-making tool when it comes to choosing investments.
Resumo:
Rhizopus microsporus var. rhizopodiformis produced high levels of alpha-amylase and glucoamylase under solid state fermentation, with several agricultural residues, such as wheat bran, cassava flour, sugar cane bagasse, rice straw, corncob and crushed corncob as carbon sources. These materials were humidified with distilled water, tap water, or saline solutions-Segato Rizzatti (SR), Khanna or Vogel. The best substrate for amylase production was wheat bran with SR saline solution (1:2 v/v). Amylolytic activity was still improved (14.3%) with a mixture of wheat bran, corncob, starch and SR saline solution (1:1:0.3:4.6 w/w/w/v). The optimized culture conditions were initial pH 5, at 45 degrees C during 6 days and relative humidity around 76%. The crude extract exhibited temperature and pH optima around 65 degrees C and 4-5, respectively. Amylase activity was fully stable for 1 h at temperatures up to 75 degrees C, and at pH values between 2.5 and 7.5.
Resumo:
Cyanobacterial strains isolated from terrestrial and freshwater habitats in Brazil were evaluated for their antimicrobial and siderophore activities. Metabolites of fifty isolates were extracted from the supernatant culture media and cells using ethyl acetate and methanol, respectively. The extracts of 24 isolates showed antimicrobial activity against several pathogenic bacteria and one yeast. These active extracts were characterized by Q-TOF/MS. The cyanobacterial strains Cylindrospermopsis raciborskii 339-T3, Synechococcus elongatus PCC7942, Microcystis aeruginosa NPCD-1, M. panniformis SCP702 and Fischerella sp. CENA19 provided the most active extracts. The 50 cyanobacterial strains were also screened for the presence of non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes and microcystin production. Putative fragment genes coding for NRPS adenylation domains and PKS keto-synthase domains were successfully PCR amplified from 92% and 80% of cyanobacterial strains, respectively. The potential therapeutical compounds siderophores were detected in five cyanobacterial isolates. Microcystin production was detected by ELISA test in 26% of the isolates. Further a protease inhibitor substance was detected by LC-MS/MS in the M. aeruginosa NPLJ-4 extract and the presence of aeruginosin and cyanopeptolin was confirmed by PCR amplification using specific primers, and sequenced. This screening study showed that Brazilian cyanobacterial isolates are a rich source of natural products with potential for pharmacological and biotechnological applications. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
To better understand the biochemical mechanisms underlying anisosmotic extracellular regulation in the freshwater Brachyura, we kinetically characterized the V-ATPase from the posterior gills of Dilocarcinus pagei, acclimated for 10 days to salinities up to 21%.. Specific activity was highest in fresh water (26.5 +/- 2.1 U mg(-1)), decreasing in 5 parts per thousand to 21 parts per thousand, attaining 3-fold less at 15 parts per thousand. Apparent affinities for ATP and Mg(2+) respectively increased 3.2- and 2-fold at 10 parts per thousand, suggesting expression of different isoenzymes. In a 240-h time-course study of exposure to 21%., maximum specific activity decreased 2.5- to 4-fold within 1 to 24 h while apparent affinities for ATP and Mg(2+) respectively increased by 12-fold within 24 h and 2.4-fold after 1 h, unchanged thereafter. K(I) for bafilomycin A(1) decreased 150-fold after 1 h, remaining constant up to 120 h. This is the first kinetic analysis of V-ATPase specific activity in crustacean gills during salinity acclimation. Our findings indicate active gill Cl(-) uptake by D. pagei in fresh water, and short- and long-term down-regulation of V-ATPase-driven ion uptake processes during salinity exposure, aiding in comprehension of the biochemical adaptations underpinning the establishment of the Brachyura in fresh water. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The in vitro inhibitory activity of crude EtOH/H(2)O extracts from the leaves and stems of Rosmarinus officinalis L. was evaluated against the following microorganisms responsible for initiating dental caries: Streptococcus mutans, salivarius, S. sobrinus, S. mitts 5 sanguinis, and Enterococcus faecalis. Minimum inhibitory concentrations (MIC) were determined with the broth microdilution method. The bioassay-guided fractionation of the leaf extract, which displayed the higher antibacterial activity than the stem extract, led to the identification of carnosic acid (2) and carnosol (3) as the major compounds in the fraction displaying the highest activity, as identified by HPLC analysis. Rosmarinic acid (1), detected in another fraction, did not display any activity against the selected microorganisms. HPLC Analysis revealed the presence of low amounts of ursolic acid (4) and oleanolic acid (5) in the obtained fractions. The results suggest that the antimicrobial activity of the extract from the leaves of R. officinalis may be ascribed mainly to the action of 2 and 3.
Resumo:
Pt-Sn electrocatalysts of different compositions were prepared and dispersed on carbon Vulcan XC-72 using the Pechini-Adams method. The catalysts were characterized by energy dispersive X-ray analysis and X-ray diffraction. The electrochemical properties of these electrode materials were also examined by cyclic voltammetry and chronoamperometric experiments in acid medium. The results showed that the presence of Sn greatly enhances the activity of Pt towards the electrooxidation of ethanol. Moreover, it contributes to reduce the amount of noble metal in the anode of direct alcohol fuel cells, which remains one of the challenges to make the technology of direct alcohol fuel cells possible. Electrolysis of ethanol solutions at 0.55 V vs. RHE allowed to determine by liquid chromatography acetaldehyde and acetic acid as the main reaction products. CO(2) was also analyzed after trapping it in a NaOH solution indicating that the cleavage of the C-C bond in the ethanol molecule did occur during the adsorption process. In situ IR reflectance spectroscopy helped to investigate in more details the reaction mechanism through the identification of the reaction products as well as the presence of some intermediate adsorbed species, such as linearly bonded carbon monoxide. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Diadromous freshwater shrimps are exposed to brackish water both as an obligatory part of their larval life cycle and during adult reproductive migration; their well-developed osmoregulatory ability is crucial to survival in such habitats. This study examines gill microsomal Na,K-ATPase (K-phosphatase activity) kinetics and protein profiles in the freshwater shrimp Macrobrachium amazonicum when in fresh water and after 10-days of acclimation to brackish water (21 parts per thousand salinity), as well as potential routes of Na(+) uptake across the gill epithelium in fresh water. On acclimation, K-phosphatase activity decreases 2.5-fold, Na,K-ATPase alpha-subunit expression declines, total protein expression pattern is markedly altered, and enzyme activity becomes redistributed into different density membrane fractions, possibly reflecting altered vesicle trafficking between the plasma membrane and intracellular compartments. Ultrastructural analysis reveals an intimately coupled pillar cell-septal cell architecture and shows that the cell membrane interfaces between the external medium and the hemolymph are greatly augmented by apical pillar cell evaginations and septal cell inviginations, respectively. These findings ire discussed regarding the putative movement of Na(+) across the pillar cell interfaces and into the hemolymph via the septal cells, powered by the Na,K-ATPase located in their invaginations. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Bovine testicular hyalurphidase (BT-HAase), a tetrameric enzyme responsible for randomly hyaluronic acid, catalytic hydrolysis, was successfully immobilized on Langmuir- Blodgett films prepared with the sodium salt of dihexadacylphosphoric acid, (DHP-Zn(II)) ending with dipalmitoylphosphatidylcholine, DPPC. Data of protein, adsorption at the air-liquid interface by means of pendant drop shipe analysis and interaction of the protein with Langmuir monolayers of DPPC, using a Langmuir trough, have provided information. about the conditions to be used in the protein immobilization. The dynamic surface pressure curves obtained from pendant drop experiments for the enzyme in buffer solutions indicate that, within the range of concentration investigated in this study, the enzyme exhibits the largest induction time at 5 mu g L(-1) attributed to diffusion processes. Nevertheless, it seems that, at this concentration, the most probable conformation should be the one which occupies the smallest area at pi -> 0. The surface pressure (pi) area curves obtained for BT-HAase and mixed DPPC- BT-HAase monolayers reveal the presence of the enzyme at the air-lipid interface up to 45 mN m(-1). Tests of enzymatic activity, using hyaluronic acid, HA, as the substrate, showed an increase of activity compared to the homogeneous medium. A simplified model of protein insertion into the lipid matrix is used to explain the obtained results.
Resumo:
Euryhaline crustaceans rarely hyporegulates and employ the driving force of the Na,K-ATPase, located at the basal surface of the gill epithelium, to maintain their hemolymph osmolality within a range compatible with cell function during hyper-regulation. Since polyamine levels increase during the adaptation of crustaceans to hyperosmotic media, we investigate the effect of exogenous polyamines on Na,K-ATPase activity in the posterior gills of Callinectes danae, a euryhaline swimming crab. Polyamine inhibition was dependent on cation concentration, charge and size in the following order: spermine > spermidine > putrescine. Spermidine affected K-0.5 values for Na+ with minor alterations in K-0.5 values for K+ and N-H-4(+), causing a decrease in maximal velocities under saturating Na+, K+ and NH4+ concentrations. Phosphorylation measurements in the presence of 20 mu M ATP revealed that the Na,K-ATPase possesses a high affinity site for this substrate. In the presence of 10 mM Na+, both spermidine and spermine inhibited formation of the phosphoenzyme; however, in the presence of 100 mM Na+, the addition of these polyamines allowed accumulation of the phosphoenzyme. The polyamines inhibited pumping activity, both by competing with Na+ at the Na+-binding site, and by inhibiting enzyme dephosphorylation. These findings suggest that polyamine-induced inhibition of Na,K-ATPase activity may be physiologically relevant during migration to fully marine environments. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Photodynamic therapy involves administration of a photosensitizing drug and its subsequent activation by visible light of the appropriate wavelength. Several approaches to increasing the specificity of photosensitizers for cancerous tissues and, in particular, through their conjugation to ligands that are directed against tumor-associated antigens have been investigated. Here, we have studied the delivery of the photocytotoxic porphyrin compound TPP(p-O-beta-D-GluOH)(3) into tumor cells that overexpress the glycosphingolipid Gb3, using the Gb3-binding nontoxic B-subunit of Shiga toxin (STxB) as a vector. To allow for site-directed chemical coupling, an STxB variant carrying a free sulfhydryl moiety at its C-terminal end has been used. Binding affinity, cellular uptake, singlet oxygen quantum yield, and phototoxicity of the conjugate have been examined. Despite some effect of coupling on both the photophysical properties of TPP(p-O-beta-D-GluOH)(3) and the affinity of STxB for its receptor, the conjugate exhibited a higher photocytotoxic activity than the photosensitizer alone and was exquisitely selective for Gb3-expressing tumor cells. Furthermore, our data strongly suggest that STxB-mediated retrograde delivery of the photosensitizer to the biosynthetic/secretory pathway is critical for optimal cytotoxic activity. In conclusion, a strong rationale for using retrograde delivery tools such as STxB in combination with photosensitizing agents for the photodynamic therapy of tumors is presented.
Resumo:
Itraconazole (ITZ) is a drug used to treat various fungal infections and may cause side effects. The aim of this study was to develop and evaluate the in vitro activity of DMSA-PLGA nanoparticles loaded with ITZ against Paracoccidioides brasiliensis, as well as their cytotoxicity. Nanoparticles were prepared using the emulsification-evaporation technique and characterized by their encapsulation efficiency, morphology (TEM), size (Nanosight) and charge (zeta potential). Antifungal efficacy in P brasiliensis was determined by minimal inhibition concentration (MIC), and cytotoxicity using MU assay. ITZ was effectively incorporated in the PLGA-DMSA nanoparticles with a loading efficiency of 72.8 +/- 3.50%. The shape was round with a solid polymeric structure, and a size distribution of 174 +/- 86 nm (Average +/- SD). The particles were negatively charged. ITZ-NANO presented antifungal inhibition (MIC = 6.25 ug/mL) against P brasiliensis and showed lower in vitro cytotoxicity than free drug (ITZ).
Resumo:
We evaluate hemolymph osmotic and ionic regulatory abilities and characterize a posterior gill microsomal (Na(+), K(+))-ATPase from the marine swimming crab, Callinectes ornatus, acclimated to 21 parts per thousand or 33 parts per thousand salinity. C ornatus is isosmotic after acclimation to 21 parts per thousand but is hyposmotic at 33 parts per thousand salinity; hemolymph ions do not recover initial levels on acclimation to 21 parts per thousand salinity but are anisoionic compared to ambient concentrations, revealing modest regulatory ability. NH(4)(+) modulates enzyme affinity for K(+), which increases 187-fold in crabs acclimated to 33%. salinity. The (Na(+), K(+))-ATPase redistributes into membrane fractions of different densities, suggesting that altered membrane composition results from salinity acclimation. ATP was hydrolyzed at maximum rates of 182.6 +/- 7.1 nmol Pi min(-1) mg(-1) (21 parts per thousand) and 76.2 +/- 3.5 nmol Pi min(-1) mg(-1) (33 parts per thousand), with little change in K(M) values (approximate to 50 mu mol L(-1)). K(+) together with NH(4)(+) synergistically stimulated activity to maximum rates of approximate to 240 nmol Pi min(-1) mg(-1). K, values for ouabain inhibition (approximate to 110 mu mol L(-1)) decreased to 44.9 +/- 1.0 mu mol L(-1) (21 parts per thousand) and 28.8 +/- 1.3 mu mol L(-1) (33 parts per thousand) in the presence of both K(+) and NH(4)(+). Assays employing various inhibitors suggest the presence of mitochondrial F(0)F(1)- and K(+)- and V-ATPase activities in the gill microsomes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This investigation provides an extensive characterization of the modulation by ATP, Mg(2+), Na(+), K(+) and NH(4)(+) of a gill microsomal (Na(+),K(+))-ATPase from Callinectes danae acclimated to 15 parts per thousand salinity. Novel findings are the lack of high-affinity ATP-binding sites and a 10-fold increase in enzyme affinity for K(+) modulated by NH4+, discussed regarding NH4+ excretion in benthic marine crabs. The (Na(+),K(+))-ATPase hydrolyzed ATP at a maximum rate of 298.7 +/- 16.7 nmol Pi min(-1) mg(-1) and K(0.5) = 174.2 +/- 9.8 mmol L(-1) obeying cooperative kinetics (n(H) = 1.2). Stimulation by sodium (V = 308.9 +/- 15.7 nmol Pi min(-1) mg(-1), K(0.5) = 7.8 +/- 0.4 mmol L(-1)), magnesium (299.2 +/- 14.1 nmol Pi min(-1) mg(-1), K(0.5) = 767.3 +/- 36.1 mmol L(-1)), potassium (300.6 +/- 153 nmol Pi min(-1) mg(-1), K(0.5) = 1.6 +/- 0.08 mmol L(-1)) and ammonium (V = 345.1 +/- 19.0 nmol Pi min(-1) mg(-1), K(0.5) = 6.0 +/- 0.3 mmol L(-1)) ions showed site-site interactions. Ouabain inhibited (Na(+),K(+))-ATPase activity with K(1) = 45.1 +/- 2.5 mu mol L(-1), although affinity for the inhibitor increased (K(1) = 22.7 +/- 1.1 mu mol L(-1)) in 50 mmol L(-1) NH(4)(+). Inhibition assays using ouabain plus oligomycin or ethacrynic acid suggest mitochondrial F(0)F(1)- and K(+)-ATPase activities, respectively. Ammonium and potassium ions synergistically stimulated specific activity up to 72%, inferring that these ions bind to different sites on the enzyme molecule, each modulating stimulation by the other. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Scototaxis, the preference for dark environments in detriment of bright ones, is an index of anxiety in zebrafish. In this work, we analyzed avoidance of the white compartment by analysis of the spatiotemporal pattern of exploratory behavior (time spent in the white compartment of the apparatus and shuttle frequency between compartments) and swimming ethogram (thigmotaxis, freezing and burst swimming in the white compartment) in four experiments. In Experiment 1, we demonstrate that spatiotemporal measures of white avoidance and locomotion do not habituate during a single 15-min session. In Experiments 2 and 3, we demonstrate that locomotor activity habituates to repeated exposures to the apparatus, regardless of whether inter-trial interval is 15-min or 24-h; however, no habituation of white avoidance was observed in either experiment. In Experiment 4, we confined animals for three 15-min sessions in the white compartment prior to recording spatiotemporal and ethogram measures in a standard preference test. After these forced exposures, white avoidance and locomotor activity showed no differences in relation to non-confined animals, but burst swimming, thigmotaxis and freezing in the white compartment were all decreased. These results suggest that neither avoidance of the white compartment nor approach to the black compartment account for the behavior of zebrafish in the scototaxis test. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The anxiolytic effects of benzodiazepines are reduced after a single exposure of rats to elevated plus-maze test (EPM). Midazolam showed an anxioselective profile in animals submitted to one session (T1) but did not change the usual exploratory behavior of rats exposed twice (T2) to the EPM. In this study we examined further the one-trial tolerance by performing a factor analysis of the exploratory behavior of rats injected with saline before both trials as well as an immunohistochemistry study for quantification of Fos expression in encephalic structures after these sessions. Factor analysis of all behavioral categories revealed that factor I consisted of anxiety-related categories in T1 whereas these same behavioral categories loaded on factor 2 in T2. Risk assessment was also dissociated as it loaded stronger on T2 (factor 3) than on T1 (factor 4). Locomotor activity in T1 loaded on factor 5. Immunohistochemistry analyses showed that Fos expression predominated in limbic structures in T1 group. The medial prefrontal cortex and amygdala were the main areas activated in T2 group. These data suggest that anxiety and risk assessment behaviors change their valence across the EPM sessions. T2 is characterized by the emergence of a fear factor, more powerful risk assessment and medial prefrontal cortex activation. The amygdala functions as a switch between the anxiety-like patterns of T1 to the cognitive control of fear prevalent in T2. The EPM retest session is proposed as a tool for assessing the cognitive activity of rodents in the control of fear. (c) 2007 Elsevier B.V. All rights reserved.