627 resultados para humification degrees


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was the glycerolysis of babassu oil catalyzed by immobilized lipase from Burkholderia cepacia, in a continuous packed-bed reactor. The best reaction conditions were previously established in batchwise via response surface methodology as a function of glycerol-to-oil molar ratio and reaction temperature. The reactor operated continuously for 22 days at 50 A degrees C, and during the first 6 days, no significant decrease on the initial lipase activity was observed. Monoglycerides concentration was in the range from 25 to 33 wt.%. Subsequently, a progressive decrease in the activity was detected, and an inactivation profile described by Arrhenius model estimated values of 50 days and 1.37 x 10(-2) h(-1), for the half-life and deactivation coefficient, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 A degrees C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L(-1) h(-1). The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L(-1) h(-1). The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L(-1) h(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different types of activated carbon were prepared by chemical activation of brewer`s spent grain (BSG) lignin using H(3)PO(4) at various acid/lignin ratios (1, 2, or 3 g/g) and carbonization temperatures (300, 450, or 600 degrees C), according to a 2(2) full-factorial design. The resulting materials were characterized with regard to their surface area, pore volume, and pore size distribution, and used for detoxification of BSG hemicellulosic hydrolysate (a mixture of sugars, phenolic compounds, metallic ions, among other compounds). BSG carbons presented BET surface areas between 33 and 692 m(2)/g, and micro- and mesopores with volumes between 0.058 and 0.453 cm(3)/g. The carbons showed high capacity for adsorption of metallic ions, mainly nickel, iron, chromium, and silicon. The concentration of phenolic compounds and color were also reduced by these sorbents. These results suggest that activated carbons with characteristics similar to those commercially found and high adsorption capacity can be produced from BSG lignin. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of Nb(3)Al and Nb(3)Sn superconductors is of great interest for the applied superconductivity area. These intermetallics composites are obtained normally by heat treatment reactions at high temperature. Processes that allow formation of the superconducting phases at lower temperatures (<1000 degrees C), particularly for Nb(3)Al, are of great interest. The present work studies phase formation and stability of Nb(3)Al and Nb(3)Sn superconducting phases using mechanical alloying (high energy ball milling). Our main objective was to form composites near stoichiometry, which could be transformed into the superconducting phases using low-temperature heat treatments. High purity Nb-Sn and Nb-Al powders were mixed to generate the required superconducting phases (Nb-25at.%Sn and Nb-25at.%Al) in an argon atmosphere glove-box. After milling in a Fritsch mill, the samples were compressed in a hydraulic uniaxial press and encapsulated in evacuated quartz tubes for heat treatment. The compressed and heat treated samples were characterized using X-ray diffractometry. Microstructure and chemical analysis were accomplished using scanning electron microscopy and energy dispersive spectrometry. Nb(3)Al XRD peaks were observed after the sintering at 800 degrees C for the sample milled for 30 h. Nb(3)Sn XRD peaks could be observed even before the heat treatment. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments based on a 2(3) central composite full factorial design were carried out in 200-ml stainless-steel containers to study the pretreatment, with dilute sulfuric acid, of a sugarcane bagasse sample obtained from a local sugar-alcohol mill. The independent variables selected for study were temperature, varied from 112.5A degrees C to 157.5A degrees C, residence time, varied from 5.0 to 35.0 min, and sulfuric acid concentration, varied from 0.0% to 3.0% (w/v). Bagasse loading of 15% (w/w) was used in all experiments. Statistical analysis of the experimental results showed that all three independent variables significantly influenced the response variables, namely the bagasse solubilization, efficiency of xylose recovery in the hemicellulosic hydrolysate, efficiency of cellulose enzymatic saccharification, and percentages of cellulose, hemicellulose, and lignin in the pretreated solids. Temperature was the factor that influenced the response variables the most, followed by acid concentration and residence time, in that order. Although harsher pretreatment conditions promoted almost complete removal of the hemicellulosic fraction, the amount of xylose recovered in the hemicellulosic hydrolysate did not exceed 61.8% of the maximum theoretical value. Cellulose enzymatic saccharification was favored by more efficient removal of hemicellulose during the pretreatment. However, detoxification of the hemicellulosic hydrolysate was necessary for better bioconversion of the sugars to ethanol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrous niobium oxide (Nb(2)O(5)center dot nH(2)O) nanoparticles had been Successfully prepared by water-in-oil microemulsion. They were characterized by X-ray diffraction (XRD), thermal analysis (TG/DTG), Fourier transform infrared spectroscopy (FTIR), BET surface area measurement, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the nanoparticle was exactly Nb(2)O(5)center dot nH(2)O with spherical shape. Their BET surface area was 60 m(2) g(-1). XRD results showed that Nb(2)O(5)center dot nH(2)O nanoparticles with crystallite size in nanometer scale were formed. The crystallinity and crystallity size increased with increasing annealing temperature. TT-phase of Nb(2)O(5) was obtained when the sample is annealed at 550 degrees C. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A type of ZrO(2)center dot nH(2)O Was synthesized and its Cr(VI) removal potential was investigated in this study. The kinetic study, adsorption isotherm, pH effect, thermodynamic study and desorption were examined in batch experiments. The kinetic process was described by a pseudo-second-order rate model very well. The Cr(VI) adsorption tended to increase with a decrease of pH. The adsorption data fitted well to the Langmuir model. The adsorption capacity increased from 61 to 66 mg g(-1) when the temperature was increased from 298 to 338 K. The positive values of both Delta H degrees and Delta S degrees suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. Delta G degrees values obtained were negative indicating a spontaneous adsorption process. The effective desorption of Cr(VI) on ZrO(2)center dot nH(2)O could be achieved using distilled water at pH 12. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Response surface methodology was used to evaluate optimal time, temperature and oxalic acid concentration for simultaneous saccharification and fermentation (SSF) of corncob particles by Pichia stipitis CBS 6054. Fifteen different conditions for pretreatment were examined in a 2(3) full factorial design with six axial points. Temperatures ranged from 132 to 180 degrees C, time from 10 to 90 min and oxalic acid loadings from 0.01 to 0.038 g/g solids. Separate maxima were found for enzymatic saccharification and hemicellulose fermentation, respectively, with the condition for maximum saccharification being significantly more severe. Ethanol production was affected by reaction temperature more than by oxalic acid and reaction time over the ranges examined. The effect of reaction temperature was significant at a 95% confidence level in its effect on ethanol production. Oxalic acid and reaction time were statistically significant at the 90% level. The highest ethanol concentration (20 g/l) was obtained after 48 h with an ethanol volumetric production rate of 0.42 g ethanol l(-1) h(-1). The ethanol yield after SSF with P. stipitis was significantly higher than predicted by sequential saccharification and fermentation of substrate pretreated under the same condition. This was attributed to the secretion of beta-glucosidase by P. stipitis. During SSF, free extracellular beta-glucosidase activity was 1.30 pNPG U/g with P. stipitis, while saccharification without the yeast was 0.66 pNPG U/g. Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A process has been elaborated for one-step low lignin content sugarcane bagasse hemicellulose extraction using alkaline solution of hydrogen peroxide. To maximize the hemicellulose yields several extraction conditions were examined applying the 2(4) factorial design: H(2)O(2) concentration from 2 to 6% (w/v), reaction time from 4 to 16 h, temperature from 20 to 60 degrees C, and magnesium sulfate absence or presence (0.5%, w/v). This approach allowed selection of conditions for the extraction of low and high lignin content hemicellulose. At midpoint the yield of hemicellulose was 94.5% with more than 88% of lignin removed. Lignin removal is suppressed at low extraction temperatures and in the absence of magnesium sulfate. Hemicellulose in 86% yield with low lignin content (5.9%) was obtained with 6% H(2)O(2) treatment for 4 h and 20 degrees C. This hemicellulose is much lighter in color than samples obtained at the midpoint condition and was found suitable for subsequent enzymatic hydrolysis. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two screenings of commercial lipases were performed to find a lipase with superior performance for the integrated production of biodiesel and monoglycerides. The first screening was carried out under alcoholysis conditions using ethanol as acyl acceptor to convert triglycerides to their corresponding ethyl esters (biodiesel). The second screening was performed under glycerolysis conditions to yield monoglycerides (MG). All lipases were immobilized on silica-PVA composite by covalent immobilization. The assays were performed using babassu oil and alcohols (ethanol or glycerol) in solvent free systems. For both substrates, lipase from Burkholderia cepacia (lipase PS) was found to be the most suitable enzyme to attain satisfactory yields. To further improve the process, the Response Surface Methodology (RSM) was used to determine the optima operating conditions for each biotransformation. For biodiesel production, the highest transesterification yield (>98%) was achieved within 48 h reaction at 39 degrees C using an oil-to-ethanol molar ratio of 1:7. For MG production, optima conditions corresponded to oil-to-glycerol molar ratio of 1: 15 at 55 degrees C, yielding 25 wt.% MG in 6 h reaction. These results show the potential of B. cepacia lipase to catalyze both reactions and the feasibility to consider an integrated approach for biodiesel and MG production. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work the Mn(5)Si(3) and Mn(5)SiB(2) phases were produced via arc melting and heat treatment at 1000 degrees C for 50 h under argon. A detailed microstructure characterization indicated the formation of single-phase Mn(5)Si(3) and near single-phase Mn(5)SiB(2) microstructures. The magnetic behavior of the Mn(5)Si(3) phase was investigated and the results are in agreement with previous data from the literature, which indicates the existence of two anti-ferromagnetic structures for temperatures below 98 K. The Mn(5)SiB(2) phase shows a ferromagnetic behavior presenting a saturation magnetization M(s) of about 5.35 x 10(5) A/m (0.67 T) at room temperature and an estimated Curie temperature between 470 and 490 K. In addition, AC susceptibility data indicates no evidence of any other magnetic ordering in 4-300 K temperature range. The magnetization values are smaller than that calculated using the magnetic moment from previous literature NMR results. This result suggests a probable ferrimagnetic arrangement of the Mn moments. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this work was to evaluate the influence of bioglass additions on the sintering and mechanical properties of yttria-stabilized zirconia ceramics, Y-TZP Samples containing different bioglass additions, varying between 0 and 30 wt.%, were cold uniaxial pressed at 80 MPa and sintered in air at 1200 degrees C or 1300 degrees C for 120 min. Sintered samples were characterized by X-ray Diffractometry and Scanning Electron Microscopy. Hardness and fracture toughness were determined using Vickers indentation method. As a preliminary biological evaluation, in vitro cytotoxicity tests by Neutral Red Uptake method (using mouse connective tissue cells, NCTC clone L929 from ATCC bank) were realized to determine the cytotoxicity level of ZrO(2)-bioglass ceramics. The increasing of bioglass amount leads to the decreasing of relative density due to martensitic (tetragonal-monoclinic) transformation during cooling of the sintered samples. Y-TZP samples sintered at 1300 degrees C containing 5 wt.% of bioglass presented the best results. with high relative density, hardness and fracture toughness of 11.3 GPa and 6.1 MPa m(1/2), respectively. Furthermore, the un-cytotoxic behavior was observed in all sintering conditions and bioglass amounts used in this study. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MgB(2) is considered to be an important conductor for applications. Optimizing flux pinning in these conductors can improve their critical currents. Doping can influence flux pinning efficiency and grain connectivity, and also affect the resistivity, upper critical field and critical temperature. This study was designed to attempt the doping of MgB(2) on the Mg sites with metal-diborides using high-energy ball milling. MgB(2) samples were prepared by milling pre-reacted MgB(2) and TaB(2) powders using a Spex 8000M mill with WC jars and balls in a nitrogen-filled glove box. The mixing concentration in (Mg(1-x)Ta(x))B(2) was up to x = 0.10. Samples were removed from the WC jars after milling times up to 4000 minutes and formed into pellets using cold isostatic pressing. The pellets were heat treated in a hot isostatic press (HIP) at 1000 degrees C under a pressure of 30 kpsi for 24 hours. The influence that milling time and TaB(2) addition had on the microstructure and the resulting superconducting properties of TaB(2)-added MgB(2) is discussed. Improvement J(c) of at high magnetic fields and of pinning could be obtained in milled samples with added TaB(2) The sample with added 5at.% TaB(2) and milled for 300 minutes showed values of J(c) similar to 7 x 10(5) A/cm(2) and F(p) similar to 14 GN/m(3) at 2T, 4.2 K. The milled and TaB(2)-mixed samples showed higher values of mu(0)H(irr) than the unmilled-unmixed sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The joint process between tapes of coated conductors is a critical issue for the most of the applications of high temperature superconductors (HTS). Using different fabrication techniques joints of YBCO coated superconductors were prepared and characterized through electrical measurements. For soldering material low melting point eutectic alloys, such as In-Sn (m.p. 116 degrees C) and Sn-Pb (m. p. 189 degrees C) were selected to prepare lap joints with effective length between 1 to 20 cm. The splice resistance and the critical current of the joints were evaluated by I-V curve measurements with the maximum current strength above the critical current, in order to evaluate the degree of degradation for each joint method. Pressed lap joints prepared with tapes without external reinforcement presented low resistance lap joint nevertheless some critical current degradation occurs when strong pressing is applied. When mechanical pressure is applied during the soldering process we can reduce the thickness of the solder alloy and a residual resistance arises from contributions of high resistivity matrix and external reinforcement. The lap joints for reinforced tape were prepared using two methods: the first, using ""as-supplied"" tape and the other after reinforcement-removal; in the latter case, the tapes were resoldered using Sn-Pb alloy. The results using several joint geometries, distinct surface preparation processes and different soldering materials are presented and analysed. The solder alloy with lower melting point and the longer joint length presented the smallest joint resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Viable cells of Candida guilliermondii were immobilized by inclusion into polyvinyl alcohol (PVA) hydrogel using the freezing-thawing method. Entrapment experiments were planned according to a 2(3) full factorial design, using the PVA concentration (80, 100, and 120 g L(-1)), the freezing temperature (-10, -15, and -20 degrees C), and the number of freezing-thawing cycles (one, three, and five) as the independent variables, integrated with three additional tests to estimate the errors. The effectiveness of the immobilization procedure was checked in Erlenmeyer flasks as the pellet capability to catalyze the xylose-to-xylitol bioconversion of a medium based on sugarcane bagasse hemicellulosic hydrolysate. To this purpose, the yield of xylitol on consumed xylose, xylitol volumetric productivity, and cell retention yield were selected as the response variables. Cell pellets were then used to perform the same bioconversion in a stirred tank reactor operated at 400 rpm, 30 degrees C, and 1.04 vvm air flowrate. At the end of fermentation, a maximum xylitol concentration of 28.7 g L(-1), a xylitol yield on consumed xylose of 0.49 g g(-1) and a xylitol volumetric productivity of 0.24 g L(-1) h(-1) were obtained.