247 resultados para bissegmented regression


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO(2) and N(2)O fluxes close to similar to 300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay-rich forest sites in central Amazonia. We found that soil CO(2) fluxes were 38% higher near large trees than at control sites >10 m away from any tree (P < 0.0001). After adjusting for large tree presence, a multiple linear regression of soil temperature, bulk density, and liana DBH explained 19% of remaining CO(2) flux variability. Soil N(2)O fluxes adjacent to Caryocar villosum, Lecythis lurida, Schefflera morototoni, and Manilkara huberi were 84%-196% greater than Erisma uncinatum and Vochysia maxima, both Vochysiaceae. Tree species identity was the most important explanatory factor for N(2)O fluxes, accounting for more than twice the N(2)O flux variability as all other factors combined. Two observations suggest a mechanism for this finding: (1) sugar addition increased N(2)O fluxes near C. villosum twice as much (P < 0.05) as near Vochysiaceae and (2) species mean N(2)O fluxes were strongly negatively correlated with tree growth rate (P = 0.002). These observations imply that through enhanced belowground carbon allocation liana and tree species can stimulate soil CO(2) and N(2)O fluxes (by enhancing denitrification when carbon limits microbial metabolism). Alternatively, low N(2)O fluxes potentially result from strong competition of tree species with microbes for nutrients. Species-specific patterns in CO(2) and N(2)O fluxes demonstrate that plant species can influence soil biogeochemical processes in a diverse tropical forest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P>Soil bulk density values are needed to convert organic carbon content to mass of organic carbon per unit area. However, field sampling and measurement of soil bulk density are labour-intensive, costly and tedious. Near-infrared reflectance spectroscopy (NIRS) is a physically non-destructive, rapid, reproducible and low-cost method that characterizes materials according to their reflectance in the near-infrared spectral region. The aim of this paper was to investigate the ability of NIRS to predict soil bulk density and to compare its performance with published pedotransfer functions. The study was carried out on a dataset of 1184 soil samples originating from a reforestation area in the Brazilian Amazon basin, and conventional soil bulk density values were obtained with metallic ""core cylinders"". The results indicate that the modified partial least squares regression used on spectral data is an alternative method for soil bulk density predictions to the published pedotransfer functions tested in this study. The NIRS method presented the closest-to-zero accuracy error (-0.002 g cm-3) and the lowest prediction error (0.13 g cm-3) and the coefficient of variation of the validation sets ranged from 8.1 to 8.9% of the mean reference values. Nevertheless, further research is required to assess the limits and specificities of the NIRS method, but it may have advantages for soil bulk density predictions, especially in environments such as the Amazon forest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

No-till (NT) adoption is an essential tool for development of sustainable agricultural systems, and how NT affects the soil organic C (SOC) dynamics is a key component of these systems. The effect of a plow tillage (PT) and NT age chronosequence on SOC concentration and interactions with soil fertility were assessed in a variable charge Oxisol, located in the South Center quadrant of Parana State, Brazil (50 degrees 23`W and 24 degrees 36`S). The chronosequence consisted of the following six sites: (i) native field (NF); (ii) PT of the native field (PNF-1) involving conversion of natural vegetation to cropland; (iii) NT for 10 years (NT-10); (iv) NT for 20 years (NT-20); (v) NT for 22 years (NT-22); and (vi) conventional tillage for 22 years (CT-22) involving PT with one disking after summer harvest and one after winter harvest to 20 cm depth plus two harrow disking. Soil samples were collected from five depths (0-2.5; 2.5-5; 5-10; 10-20; and 20-40 cm) and SOC, pH (in H(2)O and KCl), Delta pH, potential acidity, exchangeable bases, and cation exchangeable capacity (CEC) were measured. An increase in SOC concentration positively affected the pH, the negative charge and the CEC and negatively impacted potential acidity. Regression analyses indicated a close relationship between the SOC concentration and other parameters measured in this study. The regression fitted between SOC concentration and CEC showed a close relationship. There was an increase in negative charge and CEC with increase in SOC concentration: CEC increased by 0.37 cmol(c) kg(-1) for every g of C kg(-1) soil. The ratio of ECEC:SOC was 0.23 cmol(c) kg(-1) for NF and increased to 0.49 cmol(c) kg(-1) for NT-22. The rates of P and K for 0-10 cm depth increased by 9.66 kg ha(-1) yr(-1) and 17.93 kg ha(-1) yr(-1), respectively, with NF as a base line. The data presented support the conclusion that long-term NT is a useful strategy for improving fertility of soils with variable charge. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stream discharge-concentration relationships are indicators of terrestrial ecosystem function. Throughout the Amazon and Cerrado regions of Brazil rapid changes in land use and land cover may be altering these hydrochemical relationships. The current analysis focuses on factors controlling the discharge-calcium (Ca) concentration relationship since previous research in these regions has demonstrated both positive and negative slopes in linear log(10)discharge-log(10)Ca concentration regressions. The objective of the current study was to evaluate factors controlling stream discharge-Ca concentration relationships including year, season, stream order, vegetation cover, land use, and soil classification. It was hypothesized that land use and soil class are the most critical attributes controlling discharge-Ca concentration relationships. A multilevel, linear regression approach was utilized with data from 28 streams throughout Brazil. These streams come from three distinct regions and varied broadly in watershed size (< 1 to > 10(6) ha) and discharge (10(-5.7)-10(3.2) m(3) s(-1)). Linear regressions of log(10)Ca versus log(10)discharge in 13 streams have a preponderance of negative slopes with only two streams having significant positive slopes. An ANOVA decomposition suggests the effect of discharge on Ca concentration is large but variable. Vegetation cover, which incorporates aspects of land use, explains the largest proportion of the variance in the effect of discharge on Ca followed by season and year. In contrast, stream order, land use, and soil class explain most of the variation in stream Ca concentration. In the current data set, soil class, which is related to lithology, has an important effect on Ca concentration but land use, likely through its effect on runoff concentration and hydrology, has a greater effect on discharge-concentration relationships.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of laser induced breakdown spectrometry (LIBS) aiming the direct analysis of plant materials is a great challenge that still needs efforts for its development and validation. In this way, a series of experimental approaches has been carried out in order to show that LIBS can be used as an alternative method to wet acid digestions based methods for analysis of agricultural and environmental samples. The large amount of information provided by LIBS spectra for these complex samples increases the difficulties for selecting the most appropriated wavelengths for each analyte. Some applications have suggested that improvements in both accuracy and precision can be achieved by the application of multivariate calibration in LIBS data when compared to the univariate regression developed with line emission intensities. In the present work, the performance of univariate and multivariate calibration, based on partial least squares regression (PLSR), was compared for analysis of pellets of plant materials made from an appropriate mixture of cryogenically ground samples with cellulose as the binding agent. The development of a specific PLSR model for each analyte and the selection of spectral regions containing only lines of the analyte of interest were the best conditions for the analysis. In this particular application, these models showed a similar performance. but PLSR seemed to be more robust due to a lower occurrence of outliers in comparison to the univariate method. Data suggests that efforts dealing with sample presentation and fitness of standards for LIBS analysis must be done in order to fulfill the boundary conditions for matrix independent development and validation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soils are an important component in the biogeochemical cycle of carbon, storing about four times more carbon than biomass plants and nearly three times more than the atmosphere. Moreover, the carbon content is directly related on the capacity of water retention, fertility. among other properties. Thus, soil carbon quantification in field conditions is an important challenge related to carbon cycle and global climatic changes. Nowadays. Laser Induced Breakdown Spectroscopy (LIBS) can be used for qualitative elemental analyses without previous treatment of samples and the results are obtained quickly. New optical technologies made possible the portable LIBS systems and now, the great expectation is the development of methods that make possible quantitative measurements with LIBS. The goal of this work is to calibrate a portable LIBS system to carry out quantitative measures of carbon in whole tropical soil sample. For this, six samples from the Brazilian Cerrado region (Argisoil) were used. Tropical soils have large amounts of iron in their compositions, so the carbon line at 247.86 nm presents strong interference of this element (iron lines at 247.86 and 247.95). For this reason, in this work the carbon line at 193.03 nm was used. Using methods of statistical analysis as a simple linear regression, multivariate linear regression and cross-validation were possible to obtain correlation coefficients higher than 0.91. These results show the great potential of using portable LIBS systems for quantitative carbon measurements in tropical soils. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser induced breakdown spectrometry (LIBS) was applied for the determination of macro (P, K, Ca, Mg) and micronutrients (B, Cu, Fe, Mn and Zn) in sugar cane leaves, which is one of the most economically important crops in Brazil. Operational conditions were previously optimized by a neuro-genetic approach, by using a laser Nd:YAG at 1064 nm with 110 mJ per pulse focused on a pellet surface prepared with ground plant samples. Emission intensities were measured after 2.0 mu s delay time, with 4.5 mu s integration time gate and 25 accumulated laser pulses. Measurements of LIBS spectra were based on triplicate and each replicate consisted of an average of ten spectra collected in different sites (craters) of the pellet. Quantitative determinations were carried out by using univariate calibration and chemometric methods, such as PLSR and iPLS. The calibration models were obtained by using 26 laboratory samples and the validation was carried out by using 15 test samples. For comparative purpose, these samples were also microwave-assisted digested and further analyzed by ICP OES. In general, most results obtained by LIBS did not differ significantly from ICP OES data by applying a t-test at 95% confidence level. Both LIBS multivariate and univariate calibration methods produced similar results, except for Fe where better results were achieved by the multivariate approach. Repeatability precision varied from 0.7 to 15% and 1.3 to 20% from measurements obtained by multivariate and univariate calibration, respectively. It is demonstrated that LIBS is a powerful tool for analysis of pellets of plant materials for determination of macro and micronutrients by choosing calibration and validation samples with similar matrix composition.