332 resultados para Primary bloodstream infection
Resumo:
Adipose tissue tumors of the retroperitoneum showing no identifiable cytologic atypia are usually classified as lipoma-like well-differentiated liposarcoma. Whether a subset of these tumors represents true examples of retroperitoneal lipoma remains a controversial subject, because the diagnostic liposarcoma cells may be of difficult identification, even after extensive sampling. Herein, we describe a large retroperitoneal lipoma with classic histopathologic, cytogenetic, molecular cytogenetic, and molecular genetic features. Extensive morphologic inspection showed no evidence of cytologic atypia. Cytogenetic analysis performed on fresh tissue material revealed the classic lipoma chromosome t(3;12)(q27;q14-15). Fluorescence in situ hybridization on multiple sections excluded the presence of MDM2 and CDK4 amplification, but showed HMGA2 balanced rearrangement in most cells. Reverse-transcriptase polymerase chain reaction followed by sequencing analysis confirmed the presence of the HMGA2-LPP fusion gene, a characteristic and the most common fusion product found in lipoma. The patient has been followed for 2.5 years without evidence of recurrence or metastasis. These results indicate that retroperitoneal lipomata do exist, but their diagnosis must rely on stringent histologic, cytogenetic, and molecular genetic analysis.
Resumo:
Background Several primary immune deficiency disorders are associated with autoimmunity and malignancy, suggesting a state of immune dysregulation. The concept of immune dysregulation as a direct cause of autoimmunity in primary immune deficiency disorders (PIDDs) has been strengthened by the recent discovery of distinct clinical entities linked to single-gene defects resulting in multiple autoimmune phenomena including immune dysregulation, polyendocrinopathy, enteropathy and X-linked (IPEX) syndrome, and autoimmune polyendocrinopathy, candidiasis and ectodermal dystrophy (APECED) syndrome. Conclusion Reviewing recent advances in our understanding of the small subgroup of PIDD patients with defined causes for autoimmunity may lead to the development of more effective treatment strategies for idiopathic human autoimmune diseases.
Resumo:
A number of primary immunodeficiency diseases represent a paradox of immunodeficiency and autoimmunity. In this minireview, we present basic concepts of apoptosis and disorder of apoptosis as one of the mechanisms to explain such a paradox between immunodeficiency and autoimmunity, which is exemplified by autoimmune lympho-proliferative syndrome (ALPS).
Resumo:
Cutaneous vasculitis may represent a great clinical challenge, even after careful dermatological examination and laboratory assessment. The authors present a case of cutaneous cryoglobulinemic vasculitis associated to chronic hepatitis C virus infection, pointing out the importance of the dermatological examination for diagnostic investigation. They discuss about the importance of defining the etiology and making correct classification for appropriate prognosis and treatment of cutaneous vasculitis.
Resumo:
We have investigated the effect of pcDNA3-CpG and pcDNA-IL-12, delivered by intradermal gene gun administration, on the blood/lung eosinophilia, airway hyperresponsiveness as well as the immune response in a murine model of toxocariasis. Our results demonstrated that pcDNA-IL-12 but not pcDNA3-CpG vaccination Led to a persistent tower blood/bronchoalveolar eosinophilia following Toxocaro conis infection, as pcDNA3-CpG led only to an early transient blockage of eosinophil transmigration into bronchoalveolar fluid following T canis infection. Prominent Type-1 immune response was pointed out as the halt-mark of T canis infection following pcDNA-IL-12 vaccination. Outstanding IFN-gamma/IL-4 ratio besides tow levels of IgG1 with subsequent high IgG2a/IgG1 ratio further characterized a Type-1 polarized immunological profile in pcDNA-IL-12-vaccinated animals. Nevertheless, only pcDNA3-CpG was able to prevent airway hyperresponsiveness induced by T canis infection. The persistent airway hyperresponsiveness observed in pcDNA-IL-12-vaccinated animals demonstrated that the airway constriction involved other immunological mediator than those blocked by pcDNA-IL-12. Together, these data indicated that pcDNA-IL-12 and pcDNA3-CpG vaccines have distinct therapeutic benefits regarding the eosinophilic inflammation/airway hyperresponsiveness triggered by T canis infection, suggesting their possible use in further combined therapeutic interventions. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To determine the elution characteristics of the antibiotic (gentamicin) mixed with bone cement. Methods: 480mg of gentamicin was added to 40g of bone cement. Ten specimens were immersed in buffered saline solution for 28 days. Samples of days 1, 2, 7, 14, 21 and 28 were analyzed by the fluorescence polarization immunoassay method, Results: Most of the gentamicin was eluted from the cement in the first 24 hours. A gradual downslide occurred between days 2 and 14. By the 28th day, there was no trace of the antibiotic. Conclusion: The mixture released high amounts of the antibiotic in a predictable (therapeutic) manner during at least fourteen days.
Resumo:
Of the hundreds of new tuberculosis ( TB) vaccine candidates some have therapeutic value in addition to their prophylactic properties. This is the case for the DNA vaccine encoding heat-shock protein 65 (DNAhsp65) from Mycobacterium leprae. However, there are concerns about the use of DNA vaccines in certain populations such as newborns and pregnant women. Thus, the optimization of vaccination strategies that circumvent this limitation is a priority. This study evaluated the efficacy of a single dose subunit vaccine based on recombinant Hsp65 protein against infection with M. tuberculosis H37Rv. The Hsp65 protein in this study was either associated or not with immunostimulants, and was encapsulated in biodegradable PLGA microspheres. Our results demonstrate that the protein was entrapped in microspheres of adequate diameter to be engulfed by phagocytes. Mice vaccinated with a single dose of Hsp65-microspheres or Hsp65 + CpG-microspheres developed both humoral and cellular-specific immune responses. However, they did not protect mice against challenge with M. tuberculosis. By contrast, Hsp65+KLK-microspheres induced specific immune responses that reduced bacilli loads and minimized lung parenchyma damage. These data suggest that a subunit vaccine based on recombinant protein Hsp65 is feasible.
Resumo:
P>Strongyloides stercoralis is an intestinal nematode capable of chronic, persistent infection and hyperinfection of the host; this can lead to dissemination, mainly in immunosuppressive states, in which the infection can become severe and result in the death of the host. In this study, we investigated the immune response against Strongyloides venezuelensis infection in major histocompatibility complex (MHC) class I or class II deficient mice. We found that MHC II(-/-) animals were more susceptible to S. venezuelensis infection as a result of the presence of an elevated number of eggs in the faeces and a delay in the elimination of adult worms compared with wild-type (WT) and MHC I(-/-) mice. Histopathological analysis revealed that MHC II(-/-) mice had a mild inflammatory infiltration in the small intestine with a reduction in tissue eosinophilia. These mice also presented a significantly lower frequency of eosinophils and mononuclear cells in the blood, together with reduced T helper type 2 (Th2) cytokines in small intestine homogenates and sera compared with WT and MHC I(-/-) animals. Additionally, levels of parasite-specific immunoglobulin M (IgM), IgA, IgE, total IgG and IgG1 were also significantly reduced in the sera of MHC II(-/-) infected mice, while a non-significant increase in the level of IgG2a was found in comparison to WT or MHC I(-/-) infected mice. Together, these data demonstrate that expression of MHC class II but not class I molecules is required to induce a predominantly Th2 response and to achieve efficient control of S. venezuelensis infection in mice.
Resumo:
CpG oligodeoxynucleotides (ODN) have shown to be potent immunoadjuvants for several pathogens, but there is limited information concerning their use in immunization protocols against neosporosis. This study aimed to evaluate the potential of CpG-ODN combined with Neosporar lysate antigen (NLA) or excreted-secreted antigen (NcESA) to induce protective immune response against Neospora caninum infection in mice. C57BL/6 mice were vaccinated subcutaneously three times at 2-week intervals with NLA, NLA+CpG, NcESA, NcESA+CpG, CpG (adjuvant control) or PBS (infection control). Serological assays showed an increased specific IgG2a response in animals immunized with either antigen plus adjuvant and elevated levels of the IgG1 isotype in those vaccinated with antigens alone. Splenocyte proliferative responses upon antigen stimulation were higher in groups immunized with NLA OF NcESA combined with CpG, showing increased IL-12 levels. Also, mice vaccinated with NcESA or NcESA+CpG demonstrated higher IFN-gamma levels and IFN-gamma/IL-10 ratio. After lethal challenge, mice immunized with NLA+CpG or NLA had lower Morbidity score and body weight changes in comparison to other groups, and animals did not succumb during acute infection. In contrast, NcESA+CpG or NcESA groups exhibited the highest morbidity scores, body weight impairment and mortality rates, associated with greatest brain parasite burden and inflammation. In conclusion, CpG-ODN was able to induce a Th1-type humoral immune response with predominant IgG2a levels for either NLA or NcESA, but resulting in an effective Th1-driven cellular immune response and total Protection only when combined with NLA. Vaccination with NcESA alone or combined with CpG resulted in a strong cellular immune response associated with high levels of IFN-gamma and inflammation, rendering mice more susceptible to parasite challenge. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The present study, investigated the mechanisms involved in the immune responses of Major Histocompatibility Complex class I or class II knockout mice, following Strongyloides venezuelensis infection. Wild-type C57BL/6 (WT), MHC II(-/-) and MHC I(-/-) mice were individually inoculated with 3000 larvae (U) of S. venezuelensis and sacrificed on days 1, 3, 5, 8, 13 and 21 post-infection (p.i.). Samples of blood, lungs and small intestines were collected. The tissue samples were stained with hematoxylineosin for the pathological analysis. The presence of the parasite was demonstrated by immunoperoxidase analysis. MHC II(-/-) mice presented a significantly higher number of adult worms recovered from the small intestine on day 5 p.i. and presented elevated numbers of eggs in the feces. The infection by S. venezuelensis was completely eliminated 13 days after infection in WT as well as in MHC I(-/-) mice. In MHC II(-/-) mice, eggs and adult worms were still found on day 21 p.i., however, there was a significant reduction in their numbers. In the lung, the parasite was observed in MHC I(-/-) on day 1 p.i. and in MHC II(-/-) mice on days 1 and 5 p.i. In the small intestine of WT mice, a larger number of parasites were observed on day 8 p.i. and their absence was observed after day 13 p.i. Through immunohistochemistry analysis, the parasite was detected in the duodenum of WT on days 5 and 8 p.i., and in knockout mice on days 5, 8 and 13 p.i.; as well as in posterior portions of the small intestine in MHC I(-/-) and MHC II(-/-) on day 13 p.i., a finding which was not observed in WT mice. We concluded that immunohistochemistry analysis contributed to a more adequate understanding of the parasite localization in immunodeficient hosts and that the findings aid in the interpretation of immunopathogenesis in Strongyloides infection. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Chemokines comprise a structurally related family of cytokines that regulate leukocyte trafficking. Because infection with Toxoplasma gondii can induce an important inflammatory reaction that, if left uncontrolled, can lead to death, we investigated the role of the chemokine receptor CCR2 in T gondii infection. We orally infected CCR2(-/-) mice with five ME-49 T gondii cysts and monitored morbidity, survival, and immune response thereafter. The CCR2(-/-) mice displayed higher susceptibility to infection as all mice died on day 28 after infection. Despite similar Th1 responses, a more evident anti-inflammatory response was induced in the peripheral organs of CCR2(-/-) mice compared with wild-type C57BL/6 mice. Additionally, CCR2-/- mice presented greater parasitism and a milder inflammatory reaction in their peripheral organs with lesser CD4(+) and MAC-1(+) and greater CD8(+) cell migration. The parasite load decreased in these organs in CCR2(-/-) mice but remained uncontrolled in the central nervous system. Additionally, we observed down-regulated inducible nitric oxide synthase expression in peripheral organs from CCR2(-/-) mice that was associated with a small nitric oxide production by spleen macrophages. In conclusion, in the absence of CCR2, another mechanism is activated to control tissue parasitism in peripheral organs. Nevertheless, CCR2 is essential for the activation of microbicidal mediators that control T gondii replication in the central nervous system.
Resumo:
Chagas disease, characterized by acute myocarditis and chronic cardiomyopathy, is caused by infection with the protozoan parasite Trypanosoma cruzi. We sought to identify genes altered during the development of parasite-induced cardiomyopathy. Microarrays containing 27,400 sequence-verified mouse cDNAs were used to analyze global gene expression changes in the myocardium of a murine model of chagasic cardiomyopathy. Changes in gene expression were determined as the acute stage of infection developed into the chronic stage. This analysis was performed on the hearts of male CD-1 mice infected with trypomastigotes of T. cruzi (Brazil strain). At each interval we compared infected and uninfected mice and confirmed the microarray data with dye reversal. We identified eight distinct categories of mRNAs that were differentially regulated during infection and identified dysregulation of several key genes. These data may provide insight into the pathogenesis of chagasic cardiomyopathy and provide new targets for intervention. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
A shift in the activation of pulmonary macrophages characterized by an increase of IL-1, INF-alpha and IL-6 production has been induced in mice infected with Paracoccidioides brasiliensis. It is still unclear whether a functional shift in the resident alveolar macrophage population would be responsible for these observations due to the expression of cell surface molecules. We investigated pulmonary macrophages by flow cytometry from mice treated with P. brasiliensis derivatives by intratracheal route. In vivo labeling with the dye PKH26GL was applied to characterize newly recruited pulmonary macrophages from the bloodstream. Pulmonary macrophages from mice inflamed with P. brasiliensis derivatives showed a high expression of the surface antigens CD11b/CD18 and CD23 among several cellular markers. The expression of these markers indicated a pattern of activation of a subpopulation characterized as CD11b(+) or CD23(+), which was modulated in vitro by IFN-gamma and IL-4. Analysis of monocytes labelled with PKH26GL demonstrated that CD11b(+) cells did infiltrate the lung exhibiting a proinflammatoni pattern of activation, whereas CD23(+) cells were considered to be resident in the lung. These findings may contribute to better understand the pathology of lung inflammation caused by P. brasiliensis infection. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Oropouche (OROV) is a single-stranded RNA arbovirus of the family Bunyaviridae, genus Orthobunyavirus, which has caused over half a million cases of febrile illness in Brazil in the past 30 years. OROV fever has been registered almost exclusively in the Amazon region, but global warming, deforestation and redistribution of vectors and animal reservoirs increases the risk of Oropouche virus emergence in other areas. OROV causes a cytolytical infection in cultured cells with characteristic cytopathic effect 48 h post-infection. We have studied the mechanisms of apoptosis induced by OROV in HeLa cells and found that OROV causes DNA fragmentation detectable by gel electrophoresis and by flow cytometric analysis of the Sub-G1 population at 36 h post-infection. Mitochondrial release of cytochrome C and activation of caspases 9 and 3 were also detected by western blot analysis. Lack of apoptosis induced by UV-inactivated OROV reveals that virus-receptor binding is not sufficient to induce cell death. Results obtained in cells treated with chloroquine and cycloheximide indicated that viral uncoating and replication are required for apoptosis induction by OROV. Furthermore, treatment of the cells with pan-caspase inhibitor prevented OROV-induced apoptosis without affecting virus progeny production. The results show that OROV infection in vitro causes apoptosis by an intracellular pathway involving mitochondria, and activated by a mechanism dependent on viral replication and protein synthesis. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This study assessed the occurrence of human rhinovirus (HRV) species in outpatient children attending day-care in Sao Paulo, Brazil. HRV reverse transcriptase polymerase chain reaction and amplicon sequencing were done in 120 samples collected in 2008. HRV was detected in 27.5% of samples. HRV C was detected in 60.7% of wheezers, a frequency not different from that observed in nonwheezers (69.6%).