231 resultados para WATER-REPELLENT SURFACES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. To evaluate the effects of storage condition (wet or dry) and storage time (24 h and 3 months) on the ultimate tensile strength (UTS) of Single Bond (SB), 3M-ESPE; Opti Bond Solo Plus (OB), Kerr; One Step (OS), Bisco, and Prime & Bond NT (PB), Dentsply adhesive resins. Methods. Hourglass-shaped specimens were obtained from a metallic matrix. Each adhesive was dispensed to fill the molds completely and left undisturbed in a dark chamber for 4 min at 37 degrees C for solvent evaporation. They were individually light-cured for 80 s at 500 mW/cm(2) and randomly divided into three groups: 24 h of water storage; 3 months of water storage; 3 months of dry storage. The specimens were tested in tension at 0.5 mm/min using the microtensile method and data were analyzed by two-way ANOVA and SNK tests for each material. Results. Water storage for 3 months did not cause significant changes in the UTS of any of the adhesives (p-value). Values for water storage ranged from 25.9 MPa for Single Bond at 24 h to 32.7 MPa for Prime & Bond NT after 3 months. Dry storage for 3 months yielded significantly higher UTS for most adhesives, which ranged from approximately 20% for Opti Bond to 160% higher values for Single Bond compared to their 3 months wet storage values. Conclusion. The effects of storage condition and time on the UTS of adhesives were material-dependent. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. To evaluate the effects of surface moisture (wet or dry) and storage (24h or 3 months) on the microtensile bond strength (BS) of resin/dentin bonds mediated by two water/ethanol based adhesives Single Bond, 3M-ESPE, (SB) and Opti Bond Solo Plus, Kerr, (OB), and two acetone-based adhesives, One Step, Bisco, (OS) and Prime&Bond NT, Caulk/Dentsply, (PB). Materials and methods. Flat dentin surfaces were polished with 600-grit SiC paper, etched with 35% phosphoric acid for 15 s and rinsed for 20 s. Half the surface was maintained moist and the other half was air-dried for 30 s. Each adhesive was applied simultaneously to both halves, left undisturbed for 30 s and light-cured. Four-mm resin build-ups were constructed incrementally. After storage in water at 37 degrees C for 24h, slabs were produced by transversal sectioning and trimmed to an hourglass shape (0.8 mm 2). Half of the specimens were tested in tension at 0.6 mm/min immediately after trimming and the other half after 3 months of water storage. Data were analyzed by two-way ANOVA and SNK for each material. Results. Both moisture and storage affected BS to dentin, and was material- dependent. Dry, bonding affected mostly the acetone-based adhesives. Larger reductions in bond strength were associated with dry bonding after 3 months of water storage. Significance. Wet bonding resulted in more stable bonds over 3 months of water storage for most of the materials tested. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives. To better comprehend the role of CHX in the preservation of resin-dentin bonds, this study investigated the substantivity of CHX to human dentin. Material and methods. Dentin disks (n = 45) were obtained from the mid-coronal portion of human third molars. One-third of dentin disks were kept mineralized (MD), while the other two-thirds had one of the surfaces partially demineralized with 37% phosphoric acid for 15 s (PDD) or they were totally demineralized with 10% phosphoric acid (TDD). Disks of hydroxyapatite (HA) were also prepared. Specimens were treated with: (1) 10 mu L of distilled water (controls), (2) 10 mu L of 0.2% chlorhexidine diacetate (0.2% CHX) or (3) 10 mu L of 2% chlorhexidine diacetate (2% CHX). Then, they were incubated in 1 mL of PBS (pH 7.4, 37 degrees C). Substantivity was evaluated as a function of the CHX-applied dose after: 0.5 h, 1 h, 3 h, 6 h, 24 h, 168 h (1 week), 672 h (4 weeks) and 1344 h (8 weeks) of incubation. CHX concentration in eluates was spectrophotometrically analyzed at 260 nm. Results. Significant amounts of CHX remained retained in dentin substrates (MD, PPD or TDD), independent on the CHX-applied dose or time of incubation (p < 0.05). High amounts of retained CHX onto HA were observed only for specimens treated with the highest concentration of CHX (2%) (p < 0.05). Conclusion. The outstanding substantivity of CHX to dentin and its reported effect on the inhibition of dentinal proteases may explain why CHX can prolong the durability of resin-dentin bonds. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of 2% chlorhexidine digluconate (CHX) used as a therapeutic primer on the long-term bond strengths of two etch-and-rinse adhesives to normal (ND) and caries-affected (CAD) dentin. Forty extracted human molars with coronal carious lesions, surrounded by normal dentin, were selected for this study. The flat surfaces of two types of dentin (ND and CAD) were prepared with a water-cooled high-speed diamond disc, then acidetched, rinsed and air-dried. In the control groups, the dentin was re-hydrated with distilled water, blot-dried and bonded with a three-step (Scotchbond Multi-Purpose-MP) or two-step (Single Bond 2-SB) etch-and-rinse adhesive. In the experimental groups, the dentin was rehydrated with 2% CHX (60 seconds), blot-dried and bonded with the same adhesives. Resin composite build-ups were made. The specimens were prepared for microtensile bond testing in accordance with the non-trimming technique, then tested either immediately or after six-months storage in artificial saliva. The data were analyzed by ANOVA/Bonferroni tests (alpha=0.05). CHX did not affect the immediate bond strength to ND or CAD (p>0.05). CHX treatment significantly lowered the loss of bond strength after six months as seen in the control bonds for ND (p<0.05), but it did not alter the bond strength of CAD (p>0.05). The application of NIP on CHX-treated ND or CAD produced bonds that did not change over six months of storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field of regenerative medicine, nanoscale physical cuing is clearly becoming a compelling determinant of cell behavior. Developing effective methods for making nanostructured surfaces with well-defined physicochemical properties is thus mandatory for the rational design of functional biomaterials. Here, we demonstrate the versatility of simple chemical oxidative patterning to create unique nanotopographical surfaces that influence the behavior of various cell types, modulate the expression of key determinants of cell activity, and offer the potential of harnessing the power of stem cells. These findings promise to lead to a new generation of improved metal implants with intelligent surfaces that can control biological response at the site of healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>Aim To assess the physicochemical properties and the surface morphology of AH Plus, GuttaFlow, RoekoSeal and Activ GP root canal sealers. Methodology Five samples of each material were evaluated for setting time, dimensional alteration, solubility and radiopacity tests, according to ANSI/ADA Specification 57. A total of 50 mL of deionized distilled water from the solubility tests were used to measure the metal solubility by atomic absorption spectrometry. The morphologies of the external surface and the cross-section of the samples were analysed by means of a scanning electron microscope (SEM). Statistical analysis was performed by using one-way anova and post hoc Tukey-Kramer tests with the null hypothesis set as 5%. Results AH Plus had the longest setting time (580.6 +/- 3.05 min) (P < 0.05). Activ GP did not have a mean value on the radiopacity and solubility tests (1.31 +/- 0.35 mm and 11.8 +/- 0.43%, respectively) in accordance with ANSI/ADA, being significantly different from the other materials (P < 0.05), which had mean values for these tests in accordance with the ADA`s requirements. GuttaFlow was the only sealer that conformed to the Specification 57 concerning the dimensional alteration test (0.44 +/- 0.16%) (P < 0.05). The spectrometry test revealed significant Ca2+, K+, Zn2+ ion release from Activ GP sealer (32.57 +/- 5.0, 1.57 +/- 0.22 and 8.20 +/- 1.74 mu g mL-1, respectively). In SEM analysis, the loss of matrix was evident and the filler particles were more distinguishable in all groups. Conclusions The setting time of all sealers was in accordance with ANSI/ADA`s requirements. Activ GP did not fulfill ANSI/ADA`s protocols regarding radiopacity, dimensional alteration and solubility. GuttaFlow was the only sealer that conformed to the Specification 57 in all tests. SEM analysis revealed that the surfaces of all sealers had micromorphological changes after the solubility test.