228 resultados para PREMATURE CAROTID ATHEROSCLEROSIS
Resumo:
The foramen of Vesalius (FV) is located in the greater wing of the sphenoid bone between the foramen ovale (FO) and the foramen rotundum in an intracranial view. The FO allows the passage of the mandibular branch of trigeminal nerve, which is the target of the trigeminal radiofrequency rhizotomy. We analyzed its location, morphology, morphometry and interrelation among other foramina. 400 macerated adult human skulls were examined. A digital microscope (Dino-Lite plus(A (R))) was used to capture images from the FV. A digital caliper was used to perform the measurements of the distance between the FV and other foramina (FO, foramen spinosum and the carotid canal) in an extracranial view of the skull base. In the 400 analyzed skulls, the FV was identified in 135 skulls (33.75%) and absent on both sides in 265 skulls (66.25%). The FV was observed present bilaterally in 15.5% of the skulls. The incidence of unilateral foramen was 18.25% of the skulls of which 7.75% on right side and 10.5% on left side. The diameter of the FV was measured and we found an average value of 0.65 mm, on right side 0.63 mm and on the left side 0.67 mm. We verified that positive correlations were statistically significant among the three analyzed distances. This study intends to offer specific anatomical data with morphological patterns (macroscopic and mesoscopic) to increase the understanding of the FV features as frequency, incidence and important distances among adjacent foramina.
Resumo:
Serotonergic (5-HT) neurons in the nucleus raphe obscurus (ROb) are involved in the respiratory control network. However, it is not known whether ROb 5-HT neurons play a role in the functional interdependence between central and peripheral chemoreceptors. Therefore, we investigated the role of ROb 5-HT neurons in the ventilatory responses to CO(2) and their putative involvement in the central-peripheral CO(2) chemoreceptor interaction in unanaesthetised rats. We used a chemical lesion specific for 5-HT neurons (anti-SERT-SAP) of the ROb in animals with the carotid body (CB) intact or removed (CBR). Pulmonary ventilation (V (E)), body temperature and the arterial blood gases were measured before, during and after a hypercapnic challenge (7% CO(2)). The lesion of ROb 5-HT neurons alone (CB intact) or the lesion of 5-HT neurons of ROb+CBR did not affect baseline V (E) during normocapnic condition. Killing ROb 5-HT neurons (CB intact) significantly decreased the ventilatory response to hypercapnia (p < 0.05). The reduction in CO(2) sensitivity was approximately 15%. When ROb 5-HT neurons lesion was combined with CBR (anti-SERT-SAP+CBR), the V (E) response to hypercapnia was further decreased (-31.2%) compared to the control group. The attenuation of CO(2) sensitivity was approximately 30%, and it was more pronounced than the sum of the individual effects of central (ROb lesion; -12.3%) or peripheral (CBR; -5.5%) treatments. Our data indicate that ROb 5-HT neurons play an important role in the CO(2) drive to breathing and may act as an important element in the central-peripheral chemoreception interaction to CO(2) responsiveness.
Resumo:
Objectives: To compare the circulating levels of matrix metalloproteinase (MMP)-8, pro-MMP-2, pro-MMP-9, and total MMP-9, their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMP)-1 and TIMP-2, and the MMP-8/TIMP-1, MMP-9/TIMP-1, and MMP-2/TIMP-2 ratios in normotensive obese children and adolescents with those found in non obese children and adolescents. Design and methods: We studied 40 obese and 40 non obese (controls) children and adolescents in this cross-sectional study. MMP and TIMP concentrations were measured in plasma samples by gelatin zymography and ELISA. Results: Obese children and adolescents had higher circulating MMP-8 concentrations, lower plasma TIMP-1 concentrations, and higher MMP-8/TIMP-1 ratios than non obese controls (P < 0.05). We found no differences in pro-MMP-9 or total MMP-9 levels, or in MMP-9/TIMP-1 ratios between groups (P > 0.05). While we found no significant differences in pro-MMP-2 levels (P > 0.05) obese Subjects had higher TIMP-2 concentrations and lower pro-MMP-2/TIMP-2 ratios (P < 0.05) than non obese controls. Conclusions: In conclusion, we found evidence indicating higher net MMP-8 (but not MMP-9 and MMP-2) activity in childhood obesity. The increased MMP-8 levels found in obese children suggest a possibly relevant pathophysiological mechanism that may be involved in the increase of cardiovascular risk associated with childhood obesity. (c) 2009 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.