402 resultados para NITRIC-ACID SOLUTIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photochemical behavior of [Ru(NO)(NO)(2)pc] (pc = phthalocyanine) is reported in this paper. In addition to ligand localized absorption bands (lambda < 300 nm), the electronic spectrum of this complex in dichloromethane solution was dominated by an intense absorption at 640 nm characterized as Q-bands. Irradiation of [Ru(NO)(NO)(2)pc] at 366 and 660 nm led to the production of nitric oxide (NO) as detected by a NO-sensor. NO production by light irradiation at high energy involved excitation of d(pi)-pi* transition, while a photoinduced electron transfer occurred at long wavelength irradiation. The NO quantum yields varied from 1.4 x 10(-3) to 2.3 x 10(-2) mol einstein(-1), depending on oxygen concentration. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation was designed to investigate the effect of the diterpene ent-pimara-8(14),15-dien-19-oic acid (pimaradienoic acid, PA) on smooth muscle extracellular Ca2+ influx. To this end, the effect of PA on phenylephrine- and KCI-induced increases in cytosolic calcium concentration ([Ca2+](c)) measured by the variation in the ratio of fluorescence intensities (R340/ 380 nm) of Fura-2, was analysed. Whether bolus injection of PA could induce hypotensive responses in conscious normotensive rats was also evaluated. PA inhibited the contraction induced by phenylephrine (0.03 or 10 mu mol L-1) and KCI (30 or 90 mmol L-1) in endothelium-denuded rat aortic rings in a concentration dependent manner. Pre-treatment with PA (110, 100, 200 mu mol L-) attenuated the contraction induced by CaCl2 (0.5 nmol L(-)1 or 2.5 mmol L-1) in denuded rat aorta exposed to Ca2+- free medium containing phenylephrine (0.1 mu mol L-1) or KCI (30 mmol L-1). Interestingly, the inhibitory effect displayed by PA on CaCl2-induced contraction was more pronounced when KCI was used as the stimulant. Phenylephrine- and KCI-induced increases in (Ca2+,](c) were inhibited by PA. Similarly, verapamil, a Ca2+-channel blocker, also inhibited the increase in [Ca2+](c) induced by either phenylephrine or KCI. Finally, bolus injection of PA (1-15 mg kg(-1)) produced a dose-dependent decrease in mean arterial pressure in conscious normotensive rats. The results provide the first direct evidence that PA reduces vascular contractility by reducing extracellular Ca2+ influx through smooth muscle cellular membrane, a mechanism that could mediate the hypotensive response induced by this diterpene in normotensive rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aiming at contributing with the search for neuroactive substances from natural sources, we report for the first time antinociceptive and anticonvulsant effects of some Lychnophora species. We verify the protective effects of polar extracts (600 mg/kg, intraperitoneally), and methanolic fractions of L. staavioides and L. rupestris (100 mg/kg, intraperitoneally) in pentylenetetrazole-induced seizures on mice. Previously, a screening was accomplished, evaluating the antinociceptive central activity (hot plate test), with different extracts of L. rupestris, L. staavioides and L. diamantinana. It was possible to select the possible extracts of Lychnophora with central nervous system activity. Some of the active extracts were submitted to fractionation and purification process and the methanolic fractions of L. rupestris (stem) and L. staavioides (stem), with anticonvulsant properties (100 mg/kg, intraperitoneally), yielded 4,5-di-O-[E]-caffeoylquinic acid. This substance was injected intraperitoneally in mice and showed anticonvulsant effect against pentylenetetrazole-induced seizures at doses of 25 and 50 mg/kg. It has often been shown that seizures induced by pentylenetetrazole are involved in inhibition and/or attenuation of GABAergic neurotransmission. However, other systems of the central nervous system such as adenosinergic and glutamatergic could be involved in the caffeoylquinic acid effects. Further studies should be conducted to verify that the target receptor could be participating in this anticonvulsant property. Although other investigations have reported a series of biological activities from Lychnophora species, this is the first report of central analgesic and anticonvulsant activity in species of this genus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to adenosine triphosphate (ATP) production, mitochondria have been implicated in the regulation of several physiological responses in plants, such as programmed cell death (PCD) activation. Salicylic acid (SA) and reactive oxygen species (ROS) are essential signaling molecules involved in such physiological responses; however, the mechanisms by which they act remain unknown. In non-photosynthesizing tissues, mitochondria appear to serve as the main source of ROS generation. Evidence suggests that SA and ROS could regulate plant PCD through a synergistic mechanism that involves mitochondria. Herein, we isolate and characterize the mitochondria from non-photosynthesizing cell suspension cultures of Rubus fruticosus. Furthermore, we assess the primary site of ROS generation and the effects of SA on isolated organelles. Mitochondrial Complex III was found to be the major source of ROS generation in this model. In addition, we discovered that SA inhibits the electron transport chain by inactivating the semiquinone radical during the Q cycle. Computational analyses confirmed the experimental data, and a mechanism for this action is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports on the bimolecular sensitization of nitric oxide release from cis-[Ru(bpy)(2)(iso)-NO](PF(6))(3) (1) (iso = isoquinoline and bpy = 2,2`- bipyridine) by irradiating the MLCT transition of the chloro analog cis-[Ru(bpy) 2(iso) Cl] PF6 (2). The compounds displayed peaks in the ESI-MS spectra at m/z 749.1 and m/z 578.1 ascribed, respectively, to ([1(NO(o))-2PF(6)center dot CH(3)OH](2+)) and ([2-PF(6)](+)). In the cyclic voltammograms, the nitrosyl complex presented two redox waves related to the NO ligand at 0.48 and -0.37 V (versus Ag/AgCl, NO(+/0/-1) processes), while the sensitizer showed two reversible waves at 0.79 and -1.46 V (versus Ag/AgCl, Ru(2+/3+) and bpy(0/-1), respectively). The most important feature of this system is that the nitrosyl compound does not have significant absorption in the visible region, while the sensitizer has an intense band centered at 496 nm. The irradiation of an equimolar mixture of the two compounds in an ethanol: water solution (v: v) with light of lambda > 500 nm leads to NO release, as probed by amperometric measurements. The variational method was applied, showing that the two compounds self-assembly in solution with a 1: 1 stoichiometry. Fluorescence spectra acquired at 77 K provided the E(0-0) for the system and, from the thermodynamic cycle it was estimated that the photoinduced electron transfer between the species has a Delta G value of -1.59 eV. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the mechanism by which extracellular acidification promotes relaxation in rat thoracic aorta. The relaxation response to HCl-induced extracellular acidification (7.4 to 6.5) was measured in aortic rings pre-contracted with phenylephrine (Phe, 10(-6) M) or KCl (45 mM). The vascular reactivity experiments were performed in endothelium-intact and denuded rings, in the presence or absence of indomethacin (10(-5) M), L-NAME (10(-4) M), apamin (10(-6) M), and glibenclamide (10(-5) M). The effect of extracellular acidosis (pH 7.0 and 6.5) on nitric oxide (NO) production was evaluated in isolated endothelial cells loaded with diaminofluorescein-FM diacetate (DAF-FM DA, 5 mu M). The extracellular acidosis failed to induce any changes in the vascular tone of aortic rings pre-contracted with KCl, however, it caused endothelium-dependent and independent relaxation in rings pre-contracted with Phe. This acidosis induced-relaxation was inhibited by L-NAME, apamin, and glibenclamide, but not by indomethacin. The acidosis (pH 7.0 and 6.5) also promoted a time-dependent increase in the NO production by the isolated endothelial cells. These results suggest that extracellular acidosis promotes vasodilation mediated by NO, K(ATP) and SK(Ca), and maybe other K(+) channels in isolated rat thoracic aorta. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) has been demonstrated to be the primary agent in relaxing airways in humans and animals. We investigated the mechanisms involved in the relaxation induced by NO-donors, ruthenium complex [Ru(terpy)(bdq)NO(+)](3+) (TERPY) and sodium nitroprusside (SNP) in isolated trachea of rats contracted with carbachol in an isolated organs chamber. For instance, we verified the contribution of K(+) channels, the importance of sGC/cGMP pathway, the influence of the extra and intracellular Ca(2+) sources and the contribution of the epithelium on the relaxing response. Additionally, we have used confocal microscopy in order to analyze the action of the NO-donors on cytosolic Ca(2+) concentration. The results demonstrated that both compounds led to the relaxation of trachea in a dependent-concentration way. However, the maximum effect (E(max)) of TERPY is higher than the SNP. The relaxation induced by SNP (but not TERPY) was significantly reduced by pretreatment with ODQ (sGC inhibitor). Only TERPY-induced relaxation was reduced by tetraethylammonium (K(+) channels blocker) and by pre-contraction with 75 mM KCl (membrane depolarization). The response to both NO-donors was not altered by the presence of thapsigargin (sarcoplasmic reticulum Ca(2+)-ATPase inhibitor). The epithelium removal has reduced the relaxation only to SNP, and it has no effect on TERPY. The both NO-donors reduced the contraction evoked by Ca(2+) influx, while TERPY have shown a higher inhibitory effect on contraction. Moreover, the TERPY was more effective than SNP in reducing the cytosolic Ca(2+) concentration measured by confocal microscopy. In conclusion, these results show that TERPY induces airway smooth muscle relaxation by cGMP-independent mechanisms, it involves the fluxes of Ca(2+) and K(+) across the membrane, it is more effective in reducing cytosolic Ca(2+) concentration and inducing relaxation in the rat trachea than the standard drug, SNP. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers including cutaneous melanoma, in which its levels of expression are associated with a poor prognosis and depth of invasion. Recently, we have demonstrated the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Herein we compare, via electrospray ionization mass spectrometry (ESI-MS), free fatty acids (FFA) composition of mitochondria isolated from control (EtOH-treated cells) and Orlistat-treated B16-F10 mouse melanoma cells. Principal component analysis (PCA) was applied to the ESI-MS data and found to separate the two groups of samples. Mitochondria from control cells showed predominance of six ions, that is, those of m/z 157 (Pelargonic, 9:0), 255 (Palmitic, 16:0), 281 (Oleic, 18:1), 311 (Arachidic, 20:0), 327 (Docosahexaenoic, 22:6) and 339 (Behenic, 22:0). In contrast, FASN inhibition with Orlistat changes significantly mitochondrial FFA composition by reducing synthesis of palmitic acid, and its elongation and unsaturation products, such as arachidic and behenic acids, and oleic acid, respectively. ESI-MS of mitochondria isolated from Orlistat-treated cells presented therefore three major ions of m/z 157 (Pelargonic, 9:0), 193 (unknown) and 199 (Lauric, 12:0). These findings demonstrate therefore that FASN inhibition by Orlistat induces significant changes in the FFA composition of mitochondria. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid, palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers, including cutaneous melanoma, in which its levels of expression are associated with tumor invasion and poor prognosis. We have previously shown that FASN inhibition with orlistat significantly reduces the number of spontaneous mediastinal lymph node metastases following the implantation of B16-F10 mouse melanoma cells in the peritoneal cavity of C57BL/6 mice. In this study, we investigate the biological mechanisms responsible for the FASN inhibition-induced apoptosis in B16-F10 cells. Both FASN inhibitors, cerulenin and orlistat, significantly reduced melanoma cell proliferation and activated the intrinsic pathway of apoptosis, as demonstrated by the cytochrome c release and caspase-9 and -3 activation. Further, apoptosis was preceded by an increase in both reactive oxygen species production and cytosolic calcium concentrations and independent of p53 activation and mitochondrial permeability transition. Taken together, these findings demonstrate the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Laboratory Investigation (2011) 91, 232-240; doi:10.1038/labinvest.2010.157; published online 30 August 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide has been pointed out as the main agent involved in the vasodilatation, which is the major symptom of septic shock. However, there must be another mediator contributing to the circulatory failure observed in sepsis. This study aimed to investigate the endothelium-dependent relaxation induced by acetylcholine and the factors involved in this relaxation, using aortic rings isolated from rats submitted to cecal ligation and perforation (CLP), 2 h after induction of sepsis, which characterizes the hyperdynamic phase of sepsis. Under inhibition of constitutive NO-synthases (cNOS), the relaxation induced by acetylcholine was greater in the aortic rings of rats submitted to CLP compared with sham-operated rat aortic rings. The cyclooxygenase inhibitor indomethacin normalized this response, and the concentration of the stable metabolite of prostacyclin in the aorta of CLP rats increased in basal conditions and after stimulation with acetylcholine. Acetylcholine-induced NO production was lower in the endothelial cells from the aorta of CLP rats compared with sham rat aorta, but the protein expression of the cNOS was not altered. Moreover, iNOS protein expression could not be detected. Therefore, prostacyclin, and not only nitric oxide, is a mediator of the vasorelaxation induced by acetylcholine in aortas from rats submitted to CLP. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To investigate the mechanism through which the extracellular alkalinization promotes relaxation in rat thoracic aorta. Methods: The relaxation response to NaOH-induced extracellular alkalinization (7.4-8.5) was measured in aortic rings pre-contracted with phenylephrine (Phe, 10(-6) M). The vascular reactivity experiments were performed in endothelium-intact and -denuded rings, in the presence or and absence of indomethacin (10(-5) M), NG-nitro-L-arginine methyl ester (L-NAME, 10(-4) M), N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide/HCl (W-7, 10(-7) M), 2,5-dimethylbenzimidazole (DMB, 2 x 10(-5) M) and methyl-B-cyclodextrin (10(-2) M). In addition, the effects of NaOH-induced extracellular alkalinization (pH 8.0 and 8.5) on the intracellular nitric oxide (NO) concentration was evaluated in isolated endothelial cells loaded with diaminofluorescein-FM diacetate (DAF-FM DA, 5 mu M), in the presence and absence of DMB (2 x 10(-5) M). Results: The extracellular alkalinization failed to induce any change in vascular tone in aortic rings pre-contracted with KCl. In rings pre-contracted with Phe, the extracellular alkalinization caused relaxation in the endothelium-intact rings only, and this relaxation was maintained after cyclooxygenase inhibition; completely abolished by the inhibition of nitric oxide synthase (NOS), Ca(2+)/calmodulin and Na(+)/Ca(2+). exchanger (NCX), and partially blunted by the caveolae disassembly. Conclusions: These results suggest that, in rat thoracic aorta, that extracellular alkalinization with NaOH activates the NCX reverse mode of endothelial cells in rat thoracic aorta, thereby the intracellular Ca(2+) concentration and activating the Ca(2+)/calmodulin-dependent NOS. In turn, NO is released promoting relaxation. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis, structural aspects, pharmacological assays, and in vitro photoinduced cytotoxic properties of [Ru(NO)(ONO)(pc)] (pc = phthalocyanine) are described. Its biological effect on the B16F10 cell line was studied in the presence and absence of visible light irradiation. At comparable irradiation levels, [Ru(NO) (ONO)(pc)] was more effective than [Ru(pc)] at inhibiting cell growth, suggesting that occurrence of nitric oxide release following singlet oxygen production upon light irradiation may be an important mechanism by which the nitrosyl ruthenium complex exhibits enhanced biological activity in cells. Following visible light activation, the [Ru(NO)(ONO)(pc)] complex displayed increased potency in B16F10 cells upon modifications to the photoinduced dose; indeed, enhanced potency was detected when the nitrosyl ruthenium complex was encapsulated in a drug delivery system. The liposome containing the [Ru(NO)(ONO)(pc)] complex was over 25% more active than the corresponding ruthenium complex in phosphate buffer solution. The activity of the complex was directly proportional to the ruthenium amount present inside the cell, as determined by inductively coupled plasma mass spectroscopy. Flow cytometry analysis revealed that the photocytotoxic activity was mainly due to apoptosis. Furthermore, the vasorelaxation induced by [Ru(NO)(ONO)(pc)], proposed as NO carrier, was studied in rat isolated aorta. The observed vasodilation was concentration-dependent. Taken together, the present findings demonstrate that the [Ru(NO)(ONO)(pc)] complex induces vascular relaxation and could be a potent anti-tumor agent. Nitric oxide release following singlet oxygen production upon visible light irradiation on a nitrosyl ruthenium complex produces two radicals and may elicit phototoxic responses that may find useful applications in photodynamic therapy. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prominent nitric oxide (NO) donor [Ru(terpy)(bdqi)NO](PF(6))(3) has been synthesized and evaluated with respect to noteworthy biological effects due to its NO photorelease, including vascular relaxation and melanoma cell culture toxicity. The potential for delivering NO in therapeutic quantities is tenable since the nitrosyl ruthenium complex (NRC) must first reach the ""target tissue"" and then release the NO upon stimulus. In this context. NRC-loaded lipid carriers were developed and characterized to further explore its topical administration for applications such as skin cancer treatment. NRC-loaded solid lipid nanoparticles (SLN) and nanostructured lipid carriers were prepared via the microemulsification method, with average diameters of 275 +/- 15 nm and 211 +/- 31 nm and zeta potentials of -40.7 +/- 10.4 mV and -50.0 +/- 7.5 mV, respectively. In vitro kinetic studies of NRC release from nanoparticles showed sustained release of NRC from the lipid carriers and illustrated the influence of the release medium and the lyophilization process. Stability studies showed that NO is released from NRC as a function of temperature and time and due to skin contact. The encapsulation of NRC in SLN followed by its lyophilization, significantly improved the complex stability. Furthermore, of particular interest was the fact that in the NO photorelease study, the NO release from the NRC-loaded SLN was approximately twice that of just NRC in solution. NRC-loaded SLN performs well enough at releasing and protecting NO degradation in vitro that it is a promising carrier for topical delivery of NO. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) is a gaseous molecule that has specific functions dictated by its localization and its kinetics of release. As NO-donors have a range of potential uses in the skin, much attention has been paid to the development of topical NO delivery systems. The aim of this work was to study the release rate and the skin penetration of the NO-donor cis[Ru(NO(2))(bpy)(2)(4-pic)](+) from different gel formulations and their potential as topical NO delivery systems under light stimuli. Among the formulations developed, the anionic gel retarded the nitro-ruthenium complex diffusion and also obstructed NO release after light irradiation. On the other hand, NO release before light irradiation was observed when the complex was dispersed in the cationic chitosan gel, possibly due to oxi-redox reactions between the amino groups of the polymer and the drug molecule. Finally, the non-ionic gel released the NO after light irradiation to the same extent as a drug aqueous solution at the same pH. The drug dispersed in this gel also penetrated into the stratum corneum skin layer, and the nitro-ruthenium complex present in the skin was able to release the NO after light stimuli, suggesting the potential use of this formulation as a topical NO delivery system. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: Benznidazole (Bz) is the therapy currently available for clinical treatment of Chagas` disease. However, many strains of Trypanosoma cruzi parasites are naturally resistant. Nitric oxide (NO) produced by activated macrophages is crucial to the intracellular killing of parasites. Here, we investigate the in vitro and in vivo activities against T. cruzi, of the NO donor, trans-[RuCl([15]aneN(4))NO]2+. Experimental approach: Trans-[RuCl([15]aneN(4))NO]2+ was incubated with a partially drug-resistant T. cruzi Y strain and the anti-proliferative (epimastigote form) and trypanocidal activities (trypomastigote and amastigote) evaluated. Mice were treated during the acute phase of Chagas` disease. The anti-T. cruzi activity was evaluated by parasitaemia, survival rate, cardiac parasitism, myocarditis and the curative rate. Key results: Trans-[RuCl([15]aneN(4))NO]2+ was 10- and 100-fold more active than Bz against amastigotes and trypomastigotes respectively. Further, trans-[RuCl([15]aneN(4))NO]2+ (0.1 mM) induced 100% of trypanocidal activity (trypomastigotes forms) in vitro. Trans-[RuCl([15]aneN(4))NO]2+ induced permanent suppression of parasitaemia and 100% survival in a murine model of acute Chagas` disease. When the drugs were given alone, parasitological cures were confirmed in only 30 and 40% of the animals treated with the NO donor (3.33 mu mol center dot kg-1 center dot day-1) and Bz (385 mu mol center dot kg-1 center dot day-1), respectively, but when given together, 80% of the animals were parasitologically cured. The cured animals showed an absence of myocarditis and a normalisation of cytokine production in the sera. In addition, no in vitro toxicity was observed at the tested doses. Conclusions and implications: These findings indicate that trans-[RuCl([15]aneN(4))NO]2+ is a promising lead compound for the treatment of human Chagas` disease. This article is commented on by Machado et al., pp. 258-259 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00662.x and to view a related paper in this issue by Silva et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00524.x.