234 resultados para M1 macrophages
Resumo:
Background: Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) is a Gram-negative bacterium present in the oral cavity and is usually associated with localized aggressive periodontitis. Isolated antigens from A. actinomycetemcomitans can activate innate immune cells through Toll-like receptors (TLRs), which are molecules that recognize structural components conserved among microorganisms. In this study, we evaluate the role of TLR2 in the recognition of A. actinomycetemcomitans. Methods: Macrophages and neutrophils from knockout mice with targeted disruption of TLR2 (TLR2(-/-) mice) and wild-type mice were collected and used for the subsequent assays. The production of cytokines and chemokines was evaluated by enzyme-linked immunosorbent assay (ELISA), and the presence of apoptotic cells was determined by flow cytometry. In addition, the mechanisms that modulate the outcome of A. actinomycetemcomitans-induced periodontal disease in TLR2(-/-) mice were examined. Results: The results show that TLR2-deficient mice developed more severe periodontitis after A. actinomycetemcomitans infection, characterized by significantly higher bone loss and inflammatory cell migration to periodontal tissues. The inflammatory cell influx into the peritoneal cavities of TLR2(-/-) mice was three-fold lower than that observed for the littermate controls. A significantly diminished production of the cytokines tumor necrosis factor-alpha and interleukin-1 beta as well as the chemokine CC-ligand-5 in the peritoneal cavities of TLR2(-/-) mice was observed. In addition, a high frequency of apoptotic cells in the inflammatory exudates from TLR2(-/-) mice was observed. Phagocytosis and nitric oxide production was diminished in cells from TLR2(-/-) mice, facilitating the dissemination of the pathogen to the spleen. Conclusion: The results of this study highlight the involvement of TLR2 in recognizing A. actinomycetemcomitans and its essential role in controlling A. actinomycetemcomitans infection. J Periodontot 2009,80:2070-2019.
Resumo:
Paracoccidioidomycosis, the major systemic mycosis in Latin America, is caused by fungus Paracoccidioides brasiliensis. To analyze the influence of inducible nitric oxide synthase (iNOS) in this disease, iNOS-deficient (iNOS(-/-)) and wild-type (WT) mice were infected intravenously with P. brasiliensis 18 isolate. We found that, unlike WT mice, iNOS(-/-) mice did not control fungal proliferation, and began to succumb to infection by day 50 after inoculation of yeast cells. Typical inflammatory granulomas were found in WT mice, while, iNOS(-/-) mice presented incipient granulomas with intense inflammatory process and necrosis. Additionally, splenocytes from iNOS(-/-) mice did not produce nitric oxide, however, their proliferative response to Con-A was impaired, just like infected WT mice. Moreover, infected iNOS(-/-) mice presented a mixed pattern of immune response, releasing high levels of both Th1 (IL-12, IFN-gamma and TNF-alpha) and Th2 (IL-4 and IL-10) cytokines. These data suggest that the enzyme iNOS is a resistance factor during paracoccidioidomycosis by controlling fungal proliferation, by influencing cytokines production, and by appeasing the development of a high inflammatory response and consequently formation of necrosis. However, iNOS-derived nitric oxide seems not being the unique factor responsible for immunosuppression observed in infections caused by P. brasiliensis. (c) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Paracoccidioidomycosis, the major systemic mycosis in Latin America, is caused by the thermally dimorphic fungus Paracoccidioides brasiliensis. To investigate the role of interleukin (IL)-12 in this disease, IL-12p40(-/-) deficient mice (IL-12p40(-/-)) and wild type mice (WT) were infected intravenously with viable yeast cells of P. brasiliensis 18 isolate. We found that, unlike WT mice, IL-12p40(-/-) mice did not control fungal proliferation and dissemination and succumbed to infection by day 21 after inoculation. Additionally, IL-12p40(-/-) mice presented a higher number of granulomas/mm(2) in lung tissue than WT mice, and showed unorganized granulomas containing high numbers of yeast cells. Moreover, IL-12p40(-/-) mice did not release detectable levels of IFN-gamma, but they produced high levels of IL-10, as well as IgG1 antibody. Additionally, splenocytes from both infected IL-12p40(-/-) and WT mice exhibited a suppressed Con-A-induced T cell proliferative response. Our findings suggest that the IL-12p40 subunit mediates resistance in paracoccidioidomycosis by inducting IFN-gamma production and a Th1 immune response
Resumo:
Objective. The objective of this study was to determine the expression of matrix metalloproteinase-9 (MMP-9) in apical periodontitis lesions. Study design. Nineteen epithelialized and 18 nonepithelialized apical periodontitis lesions were collected after periapical surgery. After histological processing, serial sectioning, H&E staining, and microscopic analysis, 10 epithelialized and 10 nonepithelialized lesions were selected for immunohistochemical analysis for MMP-9 and CD 68. At least one third of each specimen collected was frozen at -70 degrees C for further mRNA isolation and reverse transcription into cDNA for real-time-PCR procedures. Geometric averaging of multiple housekeeping genes normalized MMP-9 mRNA expression level. Results. Polymorphonuclear neutrophils, macrophages and lymphocytes presented MMP-9 positive immunostaining in both types of lesions. When present, epithelial cells were also stained. The number and the ratio of MMP-9(+)/total cells were greater in nonepithelialized than epithelialized lesions (P = .0001) presenting a positive correlation to CD68(+)/total cells (P = .045). Both types of lesions presented increased MMP-9 expression (P < .0001) when compared to healthy periapical ligaments. However, no significant differences were observed for MMP-9 mRNA expression between ephithelized and nonephithelized lesions. Conclusion. The present data suggest the participation of several inflammatory cells, mainly CD68(+) cells, in the MMP-9 expression in apical periodontitis lesions. MMP-9 could be actively enrolled in the extracellular matrix degradation in apical periodontitis lesions. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: 127-132)
Resumo:
Objective: The objective of this study was to determine the expression of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) during apical periodontitis development. Methods: Using an experimental design of induced periapical lesions in rats and immunohistochemistry assay as investigative tool, the MMP-2 and MMP-9 expression and distribution were evaluated at 3, 7,14, 21, 30,60 and 90 days after coronary access and pulp exposure of the first left mandibular molar to the oral environment. Two blind observers scored the immunoreactivity. A semi-quantitative analysis was performed. Results: Except at day 3, MMP-2 and MMP-9 immunostaining was observed in all experimental periods. The MMP-2 (p = 0.004) and MMP-9 (p = 0.005) immunostaining was higher in the period between 7 and 21 days. They were mainly observed in cells surrounding the apical foramen and adjacent periapical areas. Cells into the hypercementosis areas were strongly stained while both osteoblasts and osteoclasts; presented discrete staining along of this study. No staining was observed on epithelial walls. At 30, 60 and 90 days, the subjacent connective tissue presented intense MMP-2 and MMP-9 immunostaining in mononuclear cells (suggestive of fibroblasts, macrophages, infiltrating neutrophils and lymphocytes). Conclusion: The results observed in this study suggest that MMP-2 and MMP-9 play a critical role in the development of inflammatory periapical lesions, probably involved in the extracellular matrix (ECM) degradation during the initial phase of the lesion development. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Large bone defects represent major clinical problems in the practice of reconstructive orthopedic and craniofacial surgery. The aim of this study was to examine, through immunohistochemistry approach, the involvement of MMP-9 and CD68(+) cells during tissue remodeling in response to natural hydroxyapatite (HA) implanted in rat subcutaneous tissue. Before experimentation, forty animals were randomly distributed into two experimental groups: Group-I (Gen-Ox (TM) micro-granules) and Group-II (Gen-Ox (TM) macro-granules). Afterwards, the biopsies were collected after 10, 20, 30, and 60 days post-implantation. Our results showed that at 10 days, a low-renewal foreign body type granuloma formation was observed in most of the cases. Macrophage- and fibroblast-like cells were the predominant type of cells positively stained for MMP-9 in both groups. Once macrophage-like cells seemed to be the major source of MMP9, antibody against pan-CD68 epitope was used to correlate these findings. In agreement, MMP-9 and CD68(+) cells were distributed at the periphery and the central region of the granuloma in all experimental periods, however no staining was observed in cell contacting to material. Besides macrophages, the lysosomal glycoprotein epitope recognized by CD68 antibodies can be expressed by mast cell granules and sometimes by fibroblasts. Taken together, our results suggest that xenogenic HA promotes extracellular matrix remodeling through induction of MMP-9 activity and presence of CD68(+) cells.
Resumo:
Reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) is a single membrane-anchored MMP-regulator and regulates matrix metalloproteinases (MMP) 2, 9 and 14. In turn, MMPs are endopeptidases that play a pivotal role in remodeling ECM. In this work, we decided to evaluate expression pattern of RECK in growing rat incisor during, specifically focusing out amelogenesis process. Based on different kinds of ameloblasts, our results showed that RECK expression was conducted by secretory and post-secretory ameloblasts. At the secretory phase, RECK was localized in the infra-nuclear region of the ameloblast, outer epithelium, near blood vessels, and in the stellate reticulum. From the transition to the maturation phases, RECK was strongly expressed by non-epithelial immuno-competent cells (macrophages and/or dendritic-like cells) in the papillary layer. From the transition to the maturation stage, RECK expression was increased. RECK mRNA was amplified by RT-PCR from whole enamel organ. Here, we verified the presence of RECK mRNA during all stages of amelogenesis. These events were governed by ameloblasts and by non-epithelial cells residents in the enamel organ. Concluding, we found differential expression of MMPs-2, -9 and RECK in the different phases of amelogenesis, suggesting that the tissue remodeling is rigorously controlled during dental mineralization.
Resumo:
Reproductive experience (i.e., pregnancy and lactation) induces physiological changes in mammals. We recently showed that a previous reproductive experience can modulate the activity of dopaminergic hypothalamic systems while decreasing serum prolactin (PRL) levels and oxidative burst activity in peritoneal macrophages. Dopamine receptor antagonists increase serum PRL levels, and both PRL and dopamine receptors might be involved in the modulation of macrophage activity, providing a means of communication between the nervous and immune systems. The present study evaluated the in vitro effects of PRL and the dopamine receptor 02 antagonist domperidone (DOMP) on the peritoneal activity of macrophages from primiparous and multiparous female rats during lactation. Oxidative bursts and phagocytosis in peritoneal macrophages were evaluated by flow cytometry. Primiparous and multiparous Wistar rats, during the period of lactation (i.e., days 5-7 after parturition) were used. Samples of peritoneal fluid from these rats were first incubated with PRL (10 and 100 nM) for different periods of time. The same procedure was repeated to evaluate the effects of DOMP (10 and 100 nM). Our results showed that macrophages from multiparous rats respond more effectively to in vitro incubation with PRL, especially with regard to oxidative bursts and the percentage of phagocytosis. Additionally, these effects were more pronounced after 30 min of incubation. These data suggest that reproductive experience is associated with a reduction in serum PRL levels, and cells in experienced female animals, including their macrophages, become more sensitive to the effects of PRL (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Statins exert anti-inflammatory effects and downregulate matrix metalloproteinases (MMPs) expression, thus contributing to restore cardiovascular homeostasis in cardiovascular diseases. We aimed at comparing the effects of different statins (simvastatin, atorvastatin, and pravastatin) on MMP-2, MMP-9, tissue inhibitors of metalloproteinases (TIMP)-1, TIMP-2, and MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios released by human umbilical vein endothelial cells (HUVEC) stimulated by phorbol myristate acetate (PMA). HUVECs were incubated with statins (0.1-10 mu M) for 12 h before stimulation with PMA 100 nM. Monolayers were used to perform cell viability assays and the supernatants were collected to determine MMPs and TIMPs levels by gelatin zymography and/or enzyme immunoassay. While treatment with PMA increased MMP-9 and TIMP-1 levels (by 556% and 159%, respectively; both P < 0.05), it exerted no effects on MMP-2 and TIMP-2 levels. Simvastatin and atorvastatin, but not pravastatin, attenuated PMA-induced increases in MMP-9 levels (P < 0.05). Only atorvastatin decreased baseline MMP-2 levels significantly (P < 0.05). We found no effects on TIMP-2 levels. Simvastatin and atorvastatin, but not pravastatin, decreased MMP-9/TIMP-1 ratio significantly (both P < 0.05), whereas atorvastatin and pravastatin, but not simvastatin, decreased MMP-2/TIMP-2 ratio significantly (both P < 0.05). Our data support the notion that statins with different physicochemical features exert variable effects on MMP/TIMP ratios (which reflect net MMP activity). Our results suggest that more lipophilic statins (simvastatin and atorvastatin), but not the hydrophilic statin pravastatin, downregulate net MMP-9 activity. However, atorvastatin and pravastatin may downregulate net MMP-2 activity. The clinical implications of the present findings deserve further investigation.