216 resultados para hierarchical hidden Markov model
Resumo:
Using data from a logging experiment in the eastern Brazilian Amazon region, we develop a matrix growth and yield model that captures the dynamic effects of harvest system choice on forest structure and composition. Multinomial logistic regression is used to estimate the growth transition parameters for a 10-year time step, while a Poisson regression model is used to estimate recruitment parameters. The model is designed to be easily integrated with an economic model of decisionmaking to perform tropical forest policy analysis. The model is used to compare the long-run structure and composition of a stand arising from the choice of implementing either conventional logging techniques or more carefully planned and executed reduced-impact logging (RIL) techniques, contrasted against a baseline projection of an unlogged forest. Results from log and leave scenarios show that a stand logged according to Brazilian management requirements will require well over 120 years to recover its initial commercial volume, regardless of logging technique employed. Implementing RIL, however, accelerates this recovery. Scenarios imposing a 40-year cutting cycle raise the possibility of sustainable harvest volumes, although at significantly lower levels than is implied by current regulations. Meeting current Brazilian forest policy goals may require an increase in the planned total area of permanent production forest or the widespread adoption of silvicultural practices that increase stand recovery and volume accumulation rates after RIL harvests. Published by Elsevier B.V.
Resumo:
Using a dynamic systems model specifically developed for Piracicaba, Capivari and Jundia River Water Basins (BH-PCJ) as a tool to help to analyze water resources management alternatives for policy makers and decision takers, five simulations for 50 years timeframe were performed. The model estimates water supply and demand, as well as wastewater generation from the consumers at BH-PCJ. A run was performed using mean precipitation value constant, and keeping the actual water supply and demand rates, the business as usual scenario. Under these considerations, it is expected an increment of about similar to 76% on water demand, that similar to 39% of available water volume will come from wastewater reuse, and that waste load increases to similar to 91%. Falkenmark Index will change from 1,403 m(3) person(-1) year(-1) in 2004, to 734 m(3) P(-1) year(-1) by 2054, and the Sustainability Index from 0.44 to 0.20. Another four simulations were performed by affecting the annual precipitation by 90 and 110%; considering an ecological flow equal to 30% of the mean daily flow; and keeping the same rates for all other factors except for ecological flow and household water consumption. All of them showed a tendency to a water crisis in the near future at BH-PCJ.
Resumo:
This paper applies Hierarchical Bayesian Models to price farm-level yield insurance contracts. This methodology considers the temporal effect, the spatial dependence and spatio-temporal models. One of the major advantages of this framework is that an estimate of the premium rate is obtained directly from the posterior distribution. These methods were applied to a farm-level data set of soybean in the State of the Parana (Brazil), for the period between 1994 and 2003. The model selection was based on a posterior predictive criterion. This study improves considerably the estimation of the fair premium rates considering the small number of observations.
Resumo:
Over the years, crop insurance programs became the focus of agricultural policy in the USA, Spain, Mexico, and more recently in Brazil. Given the increasing interest in insurance, accurate calculation of the premium rate is of great importance. We address the crop-yield distribution issue and its implications in pricing an insurance contract considering the dynamic structure of the data and incorporating the spatial correlation in the Hierarchical Bayesian framework. Results show that empirical (insurers) rates are higher in low risk areas and lower in high risk areas. Such methodological improvement is primarily important in situations of limited data.
Resumo:
This article presents a statistical model of agricultural yield data based on a set of hierarchical Bayesian models that allows joint modeling of temporal and spatial autocorrelation. This method captures a comprehensive range of the various uncertainties involved in predicting crop insurance premium rates as opposed to the more traditional ad hoc, two-stage methods that are typically based on independent estimation and prediction. A panel data set of county-average yield data was analyzed for 290 counties in the State of Parana (Brazil) for the period of 1990 through 2002. Posterior predictive criteria are used to evaluate different model specifications. This article provides substantial improvements in the statistical and actuarial methods often applied to the calculation of insurance premium rates. These improvements are especially relevant to situations where data are limited.
Resumo:
Experimental results obtained from a greenhouse trial with common bean (Phaseolus vulgaris L) plants performed to test model hypotheses regarding the onset of limiting hydraulic conditions and the shape of the transpiration reduction curve in the falling rate phase are presented. According to these hypotheses based on simulations with an upscaled single-root model, the matric flux potential at the onset of limiting hydraulic conditions is as a function of root length density and potential transpiration rate, while the relative transpiration in the falling rate phase equals the relative matric flux potential. Transpiration of bean plants in water stressed pots with four different soils was determined daily by weighing and compared to values obtained from non-stressed pots. This procedure allowed determining the onset of the falling rate phase and corresponding soil hydraulic conditions. At the onset of the falling rate phase, the value of matric flux potential M(I) showed to differ in order of magnitude from the model predicted value for three out of four soils. This difference between model and experiment can be explained by the heterogeneity of the root distribution which is not considered by the model. An empirical factor to deal with this heterogeneity should be included in the model to improve predictions. Comparing the predictions of relative transpiration in the falling rate phase using a linear shape with water content, pressure head or matric flux potential, the matric flux potential based reduction function, in agreement with the hypothesis, showed the best performance, while the pressure head based equation resulted in the highest deviations between observed and predicted values of relative transpiration rates. (C) 2010 Elsevier B.V. All rights reserved.