472 resultados para Enzyme-induced Biodegradation
Resumo:
Mounting evidence indicates that structural and functional vascular changes associated with two-kidney, one-clip (2K-1C) hypertension result, at least in part, from altered activity of matrix metalloproteinases (MMPs). Because MMPs are upregulated by increased formation of reactive oxygen species (ROS), we hypothesized that antioxidant approaches could attenuate the increases in MMP-2 expression/activity and the vascular dysfunction and remodeling associated with 2K-1C hypertension. Sham-operated or 2K-1C hypertensive rats were treated with tempol 18 mg/kg/day or apocyanin 25 mg/kg/day (or vehicle). Systolic blood pressure was monitored weekly. After 8 weeks of treatment, aortic rings were isolated to assess endothelium-dependent and -independent relaxation. Quantitative morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin sections. Aortic and systemic ROS levels were measured using dihydroethidine and thiobarbituric acid-reactive substances, respectively. Aortic MMP-2 levels and activity were determined by gelatin and in situ zymography, fluorimetry, and immunohistochemistry. Tempol and apocyanin attenuated 2K-1C hypertension (181 +/- 20.8 and 192 +/- 17.6 mm Hg, respectively, versus 213 +/- 18 mm Hg in hypertensive controls; both p<0.05) and prevented the reduction in endothelium-dependent vasorelaxation found in 2K-1C rats. Tempol, but not apocyanin (p>0.05), prevented the vascular remodeling found in 2K-1C rats (all p<0.01). Tempol was more effective than apocyanin in attenuating hypertension-induced increases in oxidative stress (both p<0.05), MMP-2 levels, and MMP-2 activity in hypertensive rats (all p<0.05). Our results suggest that antioxidant approaches decrease MMP-2 upregulation and attenuate the vascular dysfunction and remodeling during 2K-1C hypertension. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The ruthenium nitrosyl complex trans-[Ru(NO)(NH(3))(4)(py)](PF(6))(3) (pyNO), a nitric oxide (NO) donor, was studied in regard to the release of NO and its impact both on isolated mitochondria and HepG2 cells. In isolated mitochondria, NO release from pyNO was concomitant with NAD(P)H oxidation and, in the 25-100 mu M range, it resulted in dissipation of mitochondrial membrane potential, inhibition of state 3 respiration, ATP depletion and reactive oxygen species (ROS) generation. In the presence of Ca(2+), mitochondrial permeability transition (MPT), an unspecific membrane permeabilization involved in cell necrosis and some types of apoptosis, was elicited. As demonstrated by externalization of phosphatidylserine and activation of caspase-9 and caspase-3, pyNO (50-100 mu M) induced HepG2 cell death, mainly by apoptosis. The combined action of the NO itself, the peroxynitrite yielded by NO in the presence of reactive oxygen species (ROS) and the oxidative stress generated by the NAD(P)H oxidation is proposed to be involved in cell death by pyNO, both via respiratory chain inhibition and ROS levels increase, or even via MPT, if Ca(2+) is present. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The present study evaluated the potential of a w/o microemulsion as a topical carrier system for delivery of the antioxidant quercetin. Topical and transdermal delivery of quercetin were evaluated in vitro Using porcine car skin mounted on a Franz diffusion cell and in vivo on hairless-skin mice. Skin irritation by topical application of the microemulsion containing quercetin, and the protective effect of the formulation on UVB-induced decrease of endogenous reduced glutathione levels and increase of cutaneous proteinase secretion/activity were also investigated. The w/o microemulsion increased the penetration of quercetin into the stratum corneum and epidermis plus dermis at 3, 6. 9 and 12 h post-application in vitro and in vivo at 6 h post-application. No transdermal delivery of quercetin Occurred. By evaluating established endpoints of skin irritation (erythema formation, epidermis thickening and infiltration of inflammatory cells), the Study demonstrated that the daily application of the w/o microemulsion for up to 2 days did not cause skin irritation. W/o microemulsion containing quercetin significantly prevented the UVB irradiation-induced GSH depletion and secretion/activity of metalloproteinases. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background: Topical flavonoids, such as quercetin, have been shown to reduce ultraviolet (UV) irradiation-mediated skin damage. However, the mechanisms and signaling pathways involved in this protective effect are not clear. UV irradiation leads to activation of two major signaling pathways, namely nuclear factor kappa B (NF-kappa B) and activator protein-1 (AP-1) pathways. Activation of NF-kappa B pathway by UV irradiation stimulates inflammatory cytokine expression, whereas activation of AP-1 pathway by UV irradiation promotes matrix metalloproteinase (MMP) production. Both pathways contribute to UV irradiation-induced skin damage, such as photoaging and skin tumor formation. Objective: To elucidate the underlying mechanism, we examined the effect of quercetin on UV irradiation induced activation of NF-kappa B and AP-1 pathways. Methods: Primary human keratinocytes, the major skin cell type subjected to physiological solar UV irradiation, were used to study the effects of quercetin on UV irradiation-induced signal transduction pathways. Results: Quercetin decreased UV irradiation-induced NF-kappa B DNA-binding by 80%. Consequently, quercetin suppressed UV irradiation-induced expression of inflammatory cytokines IL-1 beta (similar to 60%), IL-6 (similar to 80%), IL-8 (similar to 76%) and TNF-alpha (similar to 69%). In contrast, quercetin had no effect on UV irradiation activation of three MAP kinases, ERK, JNK, or p38. Accordingly, induction of AP-1 target genes such as MMP-1 and MMP-3 by UV irradiation was not suppressed by quercetin. Conclusion: Our data indicate that the ability of quercetin to block UV irradiation-induced skin inflammation is mediated, at least in part, by its inhibitory effect on NF-kappa B activation and inflammatory cytokine production. (C) 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Aim of the study was to find out whether consumption of quercetin (QC), an abundant flavonoid in the human diet, protects against DNA damage caused by exposure to organic mercury. Therefore, rats were treated orally with methylmercury (MeHg) and the flavonoid with doses that reflect the human exposure. The animals received MeHg (30 mu g/kg/bw/day), QC (0.5-50 mg/kg/bw/day), or combinations of both over 45 days. Subsequently, the glutathione levels (GSH) and the activities of glutathione peroxidase (GPx) and catalase (CAT) were determined, and DNA damage was measured in hepatocytes and peripheral leukocytes in single cell gel electrophoresis assays. MeHg decreased the concentration of GSH and the activity of GPx by 17 and 12%, respectively and caused DNA damage to liver and blood cells, while with QC no such effects were seen. When the flavonoid was given in combination with MeHg, the intermediate and the highest concentrations (5.0 and 50.0 mg/kg/bw/day) were found to cause DNA protection; DNA migration was reduced by 54 and 65% in the hepatocytes and by 27 and 36% in the leukocytes; furthermore, the reduction in GSH and GPx levels caused by MeHg treatment was restored. In summary, our results indicate that consumption of QC-rich foods may protect Hg-exposed humans against the adverse health effects of the metal.
Resumo:
Macrophages express P2X(7) and other nucleotide (P2) receptors, and display the phenomena of extracellular ATP (ATP(e))-induced P2X(7)-dependent membrane permeabilization and cell death by apoptosis and necrosis. P2X7 receptors also cooperate with toll-like receptors (TLRs) to induce inflammasome activation and IL-1 beta secretion. We investigated signaling pathways involved in the induction of cell death by ATP, in intraperitoneal murine macrophages. Apoptosis (hypodiploid nuclei) and necrosis (LDH release) were detected 6 h after an induction period of 20 min in the presence of ATP Apoptosis was blocked by caspase 3 and caspase 9 inhibitors and by cyclosporin A. The MAPK inhibitors PD-98059, SB-203580 and SB-202190 provoked no significant effect oil apoptosis, but SB-203580 blocked LDH release. Neither apoptosis nor necrosis was inhibited when both intra- and extracellular Ca(2+) were chelated during the induction period. Mepacrine, a generic PLA(2) inhibitor and BEL, an inhibitor of Ca(2+)-independent PLA(2) (iPLA(2)) blocked apoptosis, while pBPB and AACOOPF(3). inhibitors of secretory and Ca(2+)-dependent PLA(2) respectively, had no significant effect. Cycloxygenase inhibitors had no effect on apoptosis, while the inhibitors of lipoxygenase (LOX) and leukotriene biosynthesis nordihydroguaiaretic acid (NDGA), zileuton, AA-861, and MK-886 significantly decreased apoptosis. Neither NDGA nor MK-886 blocked apoptosis of 5-LOX(-/-) macrophages. CP-105696 and MK-571, antagonists of leukotriene receptors, had no significant effect on apoptosis. None of the inhibitors of PLA(2) and LOX/leukotriene pathway had a significant inhibitory effect on LDH release. Our results indicate that a Ca(2+) -independent step involving an iPLA(2) and 5-LOX are involved in the triggering of apoptosis but not necrosis by P2X7 in macrophages. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Vitamin B(6) has shown to be a potentially effective antioxidant agent, and dietary antioxidants are also frequently valuable inhibitors of clastogenesis and carcinogenesis. The purpose of the present work was to study the clastogenicity of different doses of vitamin B6 and to examine the possible modulating effect of this vitamin on chromosomal damage induced by the antitumor agent doxorubicin in Wistar rats. Experimental groups were set up for pre-and simultaneous treatment with vitamin B6 alone or in combination with DXR. The data obtained from administering diVerent doses of vitamin B(6) (12.5-100 mg/kg b. w.) showed no signigicant increase in total chromosomal aberrations when compared with the negative control. The administration of two doses of 25 mg/kg b. w. or one dose of 50 mg/kg b. w. of vitamin B6 before doxorubicin injection seemed equally effective in protecting cells against doxorubicin clastogenicity. The anticlastogenic effect of vitamin B(6) on DXR-induced chromosomal damage could be ascribed to its antioxidant properties. Vitamin B6 was not clastogenic or cytotoxic in rat bone marrow cells and it plays a role in inhibiting the clastogenicity induced by DXR.
Resumo:
The curcumin`s effect given orally by gavage in single- or multiple-dose regimens on methemoglobinemia induced by dapsone (DDS) was investigated in male Wistar rats. In the single-dose regimen, groups of 10 rats received either vehicle alone, or curcumin at 0.1, 1.0, 10, or 30 mg/kg body weight (bw), or curcumin at 0.02, 0.1, 1, 10, or 30 mg/kg bw plus DDS at 40 mg/kg bw, intraperitoneally (i.p.), 2 hours after. In the multiple-dose regimen, groups of 10 rats received either vehicle alone, or curcumin at 0.1, 1.0, 10, or 30 mg/kg bw for 5 days, with or without DDS (40 mg/kg bw, i.p.) 2 hours after on the fifth day. In both regimens, further groups of 10 rats were given DDS alone (positive controls) or normal saline (negative controls) i.p. Single-dose treatment with curcumin at 0.02 and 0.1 mg/kg bw significantly reduced DDS-induced methemoglobin formation, while the higher doses showed a pro-oxidant effect, significantly increasing DDS-induced methemoglobinemia. In the multiple-dose regimen, treatment with curcumin at 0.1 mg/kg bw significantly reduced DDS-induced methemoglobin formation, but the higher doses were without significant effect compared to DDS alone. It is concluded that curcumin at low doses mitigates methemoglobinemia induced by dapsone in rats, both in single- and multiple-dose regimens. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
PGE(2), an arachidonic acid metabolite produced by various type of cells regulates a broad range of physiological activities in the endocrine, cardiovascular, gastrointestinal, and immune systems, and is involved in maintaining the local homeostasis. In the immune system, PGE(2) is mainly produced by APCs and it can suppress the Th1-mediated immune responses. The aim of this study was to develop PGE(2)-loaded biodegradable MS that prolong and sustain the in vivo release of this mediator. An o/w emulsion solvent extraction-evaporation method was chosen to prepare the MS. We determined their diameters, evaluated the in vitro release of PGE(2), using enzyme immunoassay and MS uptake by peritoneal macrophages. To assess the preservation of biological activities of this mediator, we determined the effect of PGE(2) released from MS on LPS-induced TNF-alpha release by murine peritoneal macrophages. We also analyzed the effect of encapsulated PGE(2) on inflammatory mediators release from HUVECs. Finally, we studied the effect of PGE(2) released from biodegradable MS in sepsis animal model. The use of this formulation can provide an alternative strategy for treating infections, by modulating or inhibiting inflammatory responses, especially when they constitute an exacerbated profile. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A thrombin-like enzyme named BjussuSP-I, isolated from B. jararacussu snake venom, is an acidic single chain glycoprotein with approximately 6% sugar, Mr = 61,000 under reducing conditions and pI similar to 3.8, representing 1.09% of the chromatographic A(280) recovery. BjussuSP-I is a glycosylated scrine protease containing both N-linked carbohydrates and sialic acid in its structure. BjussuSP-I showed a high clotting activity upon human plasma, which was inhibited by PMSF, leupeptin, heparin and 1,10-phenantroline. This enzyme showed high stability regarding coagulant activity when analyzed at different temperatures (-70 to 37 degrees C), pHs (4.5 to 8.0), and presence of two divalent metal ions (Ca2+ and Mg2+). It also displayed TAME esterase and proteolytic activities toward natural (fibrinogen and fibrin) and synthetic (BAPNA) substrates, respectively, being also inhibited by PMSF and leupeptin. BjussuSP-I can induce production of polyclonal antibodies able to inhibit its clotting activity, but unable to inhibit its proteolytic activity on fibrinogen. The enzyme also showed crossed immunoreactivity against I I venom samples of Bothrops, I of Crotalus, and I of Calloselasma snakes, in addition of LAAO isolated from B. moojeni venom. It displayed neither hemorrhagic, myotoxic, edema-inducing profiles nor proteolytic activity on casein. BjussuSP-I showed an N-terminal sequence (VLGGDECDfNEHPFLA FLYS) similar to other thrombin-like enzymes from snake venoms. Based on its biochemical, enzymatic and pharmacological characteristics, BjussuSP-I was identified as a new thrombin-like enzyme isoform from Bothrops jararacussu snake venom. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
A thrombin-like enzyme, named BjussuSP-I, isolated from Bothrops jararacussu snake venom, is an acidic single-chain glycoprotein with M-r = 61,000, pI similar to 3.8 and 6% sugar. BjussuSP-I shows high proteolytic activity upon synthetic substrates, such as S-2238 and S-2288. It also shows procoagulant and kallikrein-like activity, but is unable to act on platelets and plasmin. These activities are inhibited by specific inhibitors of this class of enzymes. The complete cDNA sequence of BjussuSP-I with 696 bp encodes open reading frames of 232 amino acid residues, which conserve the common domains of thrombin-like serine proteases. BjussuSP-I shows a high structural homology with other thrombin-like enzymes from snake venoms where common amino acid residues are identified as those corresponding to the catalytic site and subsites S1, S2 and S3 already reported. In this study, we also demonstrated the importance of N-linked glycans, to improve thrombin-like activity of BjussuSP-I toxin. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Sickle cell disease (SCD) is an inherited disorder caused by a single nucleotide substitution in the P-globin gene. The clinical heterogeneity observed in SCD patients has been attributed to environmental and genetic factors. The patients are subjected to increased oxidative stress, particularly during vaso-occlusive crises and acute chest pain. Another possible cause of oxidative stress in SCD is the high concentration of iron in the patients` plasma. The increase in oxidative stress could be a relevant risk factor for mutagenesis and carcinogenesis. Studies on the frequency of basal chromosomal aberrations in cultured lymphocytes from SCD patients have not been reported so far. In order to contribute to the understanding of the role of the different biomarkers and their relationship with the extremely variable clinical manifestation of SCD, we investigated the frequency of chromosome damage in peripheral lymphocytes from sickle cells patients and healthy controls. We found an increased frequency of chromosome damage and percentage of aberrant metaphases in these patients when compared with control subjects, even at basal values (p < 0.05). In the cytogenetic sensitivity assay, the results showed that these patients presented a marked decrease in the mitotic index values compared with healthy controls. Cisplatin-induced chromosomal damage in lymphocytes from these patients was significantly higher than the frequency measured in healthy controls. The results obtained in the present study showed that more investigations are needed in order to elucidate the susceptibility to genomic instability of SCD patients.
Resumo:
Dapsone (DDS) (4,4` diaminodiphenylsulfone), the drug of choice for the treatment of leprosy, frequently induces hemolytic anemia and methemoglobinemia. N-hydroxylation, one of the major pathways of biotransformation, has been constantly related to the methemeglobinemia after the use of the drug. In order to prevent the dapsone-induced hemotoxicity, N-acetylcysteine, a drug precursor of glutathione, was administered in combination with DDS to male Wistar rats, weighting 220-240 g. The animals were then anaesthetized and blood was collected from the aorta for determination of plasma DDS concentration by HPLC, determination of methemoglobinemia and glutathione by spectrophotometry, and for biochemical and hematological parameters. Our results showed that N-acetylcysteine enhanced dapsone-induced methemoglobinemia due to increased dapasone plasmatic concentration and consequent increased N-hydroxylamine formation. We concluded that drug interactions with dapsone require individually studies in order to avoid undesirable effects of dapsone.
Resumo:
Conidia are responsible for reproduction, dispersal, environmental persistence and host infection of many fungal species. One of the main environmental factors that can kill and/or damage conidia is solar UV radiation. Cyclobutane pyrimidine dimers (CPD) are the major DNA photoproducts induced by UVB. We examined the conidial germination kinetics and the occurrence of CPD in DNA of conidia exposed to different doses of UVB radiation. Conidia of Aspergillus fumigatus, Aspergillus nidulans and Metarhizium acridum were exposed to UVB doses of 0.9, 1.8, 3.6 and 5.4 kJ m-2. CPD were quantified using T4 endonuclease V and alkaline agarose gel electrophoresis. Most of the doses were sublethal for all three species. Exposures to UVB delayed conidial germination and the delays were directly related both to UVB doses and CPD frequencies. The frequencies of dimers also were linear and directly proportional to the UVB doses, but the CPD yields differed among species. We also evaluated the impact of conidial pigmentation on germination and CPD induction on Metarhizium robertsii. The frequency of dimers in an albino mutant was approximately 10 times higher than of its green wild-type parent strain after exposure to a sublethal dose (1.8 kJ m-2) of UVB radiation.
Resumo:
Lutein (LT) is the second most prevalent carotenoid in human serum, and it is abundantly present in dark, leafy green vegetables. The objectives of this study were to evaluate the genotoxicity and mutagenicity of LT, and its protective effects in vivo against DNA damage and chromosome instability induced by cisplatin (cDDP). For this purpose, we used the comet assay and micronucleus (MN) test, and we evaluated the antioxidant effects of LT by determination of enzymatic (catalase-CAT) and non-enzymatic (reduced glutathione-GSH) activity. Mice were divided into six groups: cDDP, mineral oil (OM), LT groups and LT + cDDP groups. To perform the MN test on peripheral blood (PB) cells, blood samples were collected before the first treatment (T0), and 36 h (T1) and 14 days (T2) after the first treatment. To perform the comet assay, blood samples were collected 4 h after the first and the last treatment. Oxidative capacity was analyzed in total blood that was collected 24 h after the last treatment, when bone marrow (BM) sample was also collected for the MN test. No genotoxic or mutagenic effects of LT were observed for the doses evaluated. We did find that this carotenoid was able to reduce the formation of crosslinks and chromosome instability induced by cDDP. No differences were observed in CAT levels, and LT treatment increased GSH levels compared with a negative control group, reinforcing the role of this carotenoid as an antioxidant.