217 resultados para E7 Transforming Protein


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are a family of enzymes strongly involved in the regulation of cell growth and differentiation. Since there is no information concerning the relationship between osteoblastic differentiation and LMW-PTP expression/activity, we investigated its involvement during human osteoblast-like cells (hFOB 1.19) differentiation. It is known that LMW-PTP is regulated by an elegant redox mechanism, so we also observed how the osteoblastic differentiation affected the reduced glutathione levels. Design: hFOB 1.19 cells were cultured in DMEM/F12 up to 35 days. The osteoblast phenotype acquisition was monitored by measuring alkaline phosphatase activity and mineralized nodule formation by Von Kossa staining. LMW-PTP activity and expression were measured using the p-nitrophenylphosphate as substrate and Western blotting respectively. Crystal violet assay determined the cell number in each experimental point. Glutathione level was determined by both HPLC and DNTB assays. Results: LMW-PTP modulation was coincident with the osteoblastic differentiation biomarkers, such as alkaline phosphatase activity and presence of nodules of mineralization in Vitro. Likewise LMW-PTP, the reduced glutathione-dependent microenvironment was modulated during osteoblastic differentiation. During this process, LMW-PTP expression/activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day (p < 0.001) of culturing, decreasing thereafter. Conclusions: Our results clearly suggest that LMW-PTP expression/activity was rigorously modulated during osteoblastic differentiation, possibly in response to the redox status of the cells, since it seems to depend on suitable levels of reduced glutathione. in this way, we pointed out LMW-PTP as an important signaling molecule in osteoblast biology and bone formation. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study was to investigate the prevalence of the Eosinophil cationic protein (ECP)-gene polymorphism 434(G > C) in oral squamous cell carcinoma (OSCC) patients and its association with tumor-associated tissue eosinophilia (TATE), demographic, clinical, and microscopic variables. Methods: The ECP genotypes of 165 healthy individuals and 157 OSCC patients were detected by PCR-RFLP analysis after cleavage of the amplified DNA sequence with enzyme PstI. TATE was obtained by morphometric analysis. Chi-square test or Fisher`s exact test was used to analyze the association of ECP-gene polymorphism 434(G > C) with TATE, demographic, clinical, and microscopic variables in OSCC patients. Disease-free survival and overall survival were calculated by the Kaplan-Meier product-limit actuarial method and the comparison of the survival curves were performed using log rank test. Results: Most of healthy individuals (53.33%) and OSCC patients (57.97%) were heterozygous for the ECP 434(G > C) polymorphism. Based on numerical differences, our results showed that OSCC patients with intense TATE and at least one C allele had a higher frequency of bilateral neck dissection, local recurrence, vascular embolization, involved resection margins, and postoperative radiotherapy. No statistically significant differences on survival rates were found in OSCC patients presenting different ECP 434(G > C) genotypes. Conclusions: These results suggest a tendency towards a poor clinical outcome in OSCC patients with intense TATE and 434GC/CC genotypes, probably due to an ECP genetic variant with altered cytotoxic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Fibroblasts are considered important cells in periodontitis. When challenged by different agents, they respond through the release of cytokines that participate in the inflammatory process. The aim of this study is to evaluate and compare the expression and production of macrophage inflammatory protein (MIP)-1 alpha, stromal-derived factor (SDF)-1, and interleukin (IL)-6 by human cultured periodontal ligament and gingival fibroblasts challenged with lipopolysaccharide (LPS) from Porphyromonas gingivalis. Methods: Fibroblasts were cultured from biopsies of gingival tissue and periodontal ligament of the same donors and used on the fourth passage. After confluence in 24-well plates, the culture medium alone (control) or with 0.1 to 10 mu g/ml of LPS from P. gingivalis was added to the wells, and after 1, 6, and 24 hours, the supernatant and the cells were collected and analyzed by enzyme-linked immunosorbent assay and real-time polymerase chain reaction, respectively. Results: MIP-1 alpha, SDF-1, and IL-6 protein production was significantly greater in gingival fibroblasts compared to periodontal ligament fibroblasts. IL-6 was upregulated in a time-dependent manner, mainly in gingival fibroblasts (P<0.05), which secreted more MIP-1 alpha in the lowest concentration of LPS used (0.1 mu g/ml). In contrast, a basal production of SDF-1 that was inhibited with the increase of LPS concentration was detected, especially after 24 hours (P<0.05). Conclusion: The distinct ability of the gingival and periodontal ligament fibroblasts to secrete MIP-1 alpha, SDF-1, and IL-6 emphasizes that these cells may differently contribute to the balance of cytokines in the LPS-challenged periodontium. J Periodontol 2010;81:310-317.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of TAK-778 [(2R, 4S)-(-)-N-(4-diethoxyphosphorylmethylphenyl)-1,2,4,5-tetrahydro-4-methyl-7,8-methylenedioxy-5-oxo-3-benzothiepin-2-carboxamide)] on in vitro osteogenic events and on gene expression of osteoblastic cells derived from human alveolar bone and the participation of estrogen receptors (ERs) on such effect. Osteoblastic cells were subcultured, with or without TAK-778 (10(-5) M), to evaluate cell growth and viability, total protein content, and alkaline phosphatase (ALP) activity at 7, 14, and 21 days; bone-like formation at 21 days; and gene expression, using cDNA microarray, at 7 days. Also, osteoblastic cells were exposed to TAK-778 (10-5 M) combined to ICI182,780, a nonspecific ER antagonist (10(-6) M), and gene expression was evaluated by real-time polymerase chain reaction (PCR) at 7 days. TAK-778 induced a reduction in culture growth and an increase in cell synthesis, ALP activity, and bone-like formation. The cDNA microarray showed genes associated with cell adhesion and differentiation, skeletal development, ossification, and transforming growth factor-P receptor signaling pathway, with a tendency to be higher expressed in cells exposed to TAK-778. The gene expression of ALP, osteocalcin, Msh homeobox 2, receptor activator of NF-kappa B ligand, and intercellular adhesion molecule 1 was increased by TAK-778 as demonstrated by real-time PCR, and this effect was antagonized by ICI182,780. The present results demonstrated that TAK-778 acts at a transcriptional level to enhance the in vitro osteogenic process and that its effect on gene expression of osteoblastic cells is mediated, at least partially, through ERs. Based on these findings, TAK-778 could be considered in the treatment of bone metabolic disorders. Exp Biol Med 234:190-199, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The continued increase in tuberculosis (TB) rates and the appearance of extremely resistant Mycobacterium tuberculosis strains (XDR-TB) worldwide are some of the great problems of public health. In this context, DNA immunotherapy has been proposed as an effective alternative that could circumvent the limitations of conventional drugs. Nonetheless, the molecular events underlying these therapeutic effects are poorly understood. Methods We characterized the transcriptional signature of lungs from mice infected with M. tuberculosis and treated with heat shock protein 65 as a genetic vaccine (DNAhsp65) combining microarray and real-time polymerase chain reaction analysis. The gene expression data were correlated with the histopathological analysis of lungs. Results The differential modulation of a high number of genes allowed us to distinguish DNAhsp65-treated from nontreated animals (saline and vector-injected mice). Functional analysis of this group of genes suggests that DNAhsp65 therapy could not only boost the T helper (Th)1 immune response, but also could inhibit Th2 cytokines and regulate the intensity of inflammation through fine tuning of gene expression of various genes, including those of interleukin-17, lymphotoxin A, tumour necrosis factor-cl, interleukin-6, transforming growth factor-beta, inducible nitric oxide synthase and Foxp3. In addition, a large number of genes and expressed sequence tags previously unrelated to DNA-therapy were identified. All these findings were well correlated with the histopathological lesions presented in the lungs. Conclusions The effects of DNA therapy are reflected in gene expression modulation; therefore, the genes identified as differentially expressed could be considered as transcriptional biomarkers of DNAhsp65 immunotherapy against TB. The data have important implications for achieving a better understanding of gene-based therapies. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strategies to promote bone repair have included exposure of cells to growth factor (GF) preparations from blood that generally include proteins as part of a complex mixture. This study aimed to evaluate the effects of such a mixture on different parameters of the development of the osteogenic phenotype in vitro. Osteoblastic cells were obtained by enzymatic digestion of human alveolar bone and cultured under standard osteogenic conditions until subconfluence. They were subcultured on Thermanox coverslips up to 14 days. Treated cultures were exposed during the first 7 days to osteogenic medium supplemented with a GFs + proteins mixture containing the major components found in platelet extracts [plate I et-derived growth factor-BB, transforming growth factor (TGF)-beta 1, TGF-beta 2, albumin, fibronectin, and thrombospondin] and to osteogenic medium alone thereafter. Control cultures were exposed only to the osteogenic medium. Treated cultures exhibited a significantly higher number of adherent cells from day 4 onward and of cycling cells at days 1 and 4, weak alkaline phosphatase (ALP) labeling, and significantly decreased levels of ALP activity and mRNA expression. At day 14, no Alizarin red-stained nodular areas were detected in cultures treated with GFs + proteins. Results were confirmed in the rat calvaria-derived osteogenic cell culture model. The addition of bone morphogenetic protein 7 or growth and differentiation factor 5 to treated cultures upregulated Runx2 and ALP mRNA expression, but surprisingly, ALP activity was not restored. These results showed that a mixture of GFs + proteins affects the development of the osteogenic phenotype both in human and rat cultures, leading to an increase in the number of cells, but expressed a less differentiated state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Distraction osteogenesis (DO) is a method of producing new bone directly from the osteotomy site by gradual traction of the divided bone fragments. Aim The purpose of the present study was to evaluate histomorphometrically whether acute DO would constitute a viable alternative to the conventional continuous distraction treatment and also to verify the capacity of a recombinant human BMP (rhBMP-2) associated with monoolein gel to stimulate bone formation in the acute distraction process. Materials and methods Forty-eight Wistar rats were assigned to three groups: Group 1, treated at a conventional continuous distraction rate (0.5 mm/day), Group 2, treated with acute distraction of 2.5 mm at the time of the surgical procedure, and Group 3, subjected to acute distraction associated with rhBMP-2. The animals from each experimental group were killed at the end of the second or fourth post-operative weeks and the volume fraction of newly formed bone trabeculae was estimated in histological images by a differential point-counting method. Results The results showed that after 2 and 4 weeks, bone volumes in the rhBMP-2 group were significantly higher than in the other groups (P < 0.05), but no significant difference was observed in the volume fraction of newly formed bone between the continuous and acute DO groups. Conclusion In conclusion, the study indicates that rhBMP-2 can enhance the bone formation at acute DO, which may potentially reduce the treatment period and complications related to the distraction procedure. To cite this article:Issa JPM, do Nascimento C, Lamano T, Iyomasa MM, Sebald W, de Albuquerque Jr RF. Effect of recombinant human bone morphogenetic protein-2 on bone formation in the acute distraction osteogenesis of rat mandibles.Clin. Oral Impl. Res. 20, 2009; 1286-1292.doi: 10.1111/j.1600-0501.2009.01799.x.