260 resultados para DPPH center dot
Resumo:
Highly stable and crystalline V(2)O(5) nanoparticles with an average diameter of 15 nm have been easily prepared by thermal treatment of a bariandite-like vanadium oxide, V(10)O(24)center dot 9H(2)O. Their characterization was carried out by powder X-ray diffractometry (XRD). Fourier transform infrared (FT-IR) and Raman spectroscopies, and transmission electron microscopy (TEM). The fibrous and nanostructured film obtained by electrophoretic deposition of the V(2)O(5) nanoparticles showed good electroactivity when submitted to cyclic voltammetry in an ionic liquid-based electrolyte. The use of this film for the preparation of a nanostructured electrode led to an improvement of about 50% in discharge capacity values when compared with similar electrodes obtained by casting of a V(2)O(5) xerogel. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The ozonolysis of 2,4-xylidine (2,4-dimethyl-aniline) in acidic aqueous solution was investigated by determining the major reaction products and their evolution as a function of the reaction time and their dependence on the pH of the reaction system. 2,4-Dimethyl-nitrobenzene and 2,4-dimethyl-phenol were found to be primary reaction products; their formation might be explained by electron transfer and substitution reactions. 2,4-Dimethyl-phenol was further oxidized yielding 2,4-dimethyl- and/or 4,6-dimethyl-resorcinol by electrophilic addition of HO(center dot) radicals. The best fitting phenomenological kinetic model and the good convergence of calculated and experimentally determined rate constants imply two additional competitive pathways of substrate oxidation: (i) electrophilic addition of HO(center dot) radicals and fast subsequent substitution would also yield the resorcinol derivatives. (ii) Substrate and isolated products are thought to be oxidized by hydrogen abstraction at the benzylic sites, but the corresponding products (alcohols, aldehydes, and carboxylic acids) could not be identified. Fe(II) was added to probe for the presence of H(2)O(2), but had no or only a minor effect on the kinetics of the ozonolysis. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The pressure dependence of the glass-transition temperature, T(g)(P), of the ionic glass-former 2Ca(NO(3))(2) center dot 3KNO(3), CKN, has been obtained by molecular dynamics (MD) simulations The liquid-glass difference of thermal expansivity, Delta alpha, heat capacity, Delta C(p), and isothermal compressibility, Delta kappa, have been calculated as a function of pressure. It has been found that the Ehrenfest relation dT(g)/dP = TV Delta alpha/Delta C(p) predicts the pressure dependence of T, but the other Ehrenfest relation, dT(g)/dP = Delta kappa/Delta alpha, does not. Consequently, the Prigogine-Defay ratio, Pi = Delta C(p)Delta kappa/TV Delta alpha(2), is Pi similar to 1.2 at low pressures, but increases 1 order of magnitude at high pressures. The pressure dependence of the Prigogine-Defay ratio is interpreted in light of recent explanations for the finding Pi > 1.
Spectroscopic investigation of the interactions between emeraldine base polyaniline and Eu(III) ions
Resumo:
The interactions of emeraldine base form of polyaniline (EB-PANI) and Eu(III) ions in 1-methyl-2-pyrrolidinone (NMP) solution and in films have been investigated by UV-vis-NIR, resonance Raman. luminescence and electron paramagnetic resonance (EPR) spectroscopies. These spectroscopic techniques allowed to characterize quinone and semiquinone segments in the polymeric chains. and the oxidation state of europium ions in Eu-PANI samples. For high values of Eu(III)/N molar ratio (24/1) the presence of a weak polaronic absorption band at 980 nm in UV-vis-NIR spectrum and the observation of bands at 1330 and 1378 (nu(center dot)(C-N+)) cm(-1) due to emeraldine salt in the Raman spectrum at 1064 nm indicate a low doping degree. Oxidation of EB-PANI to pernigraniline base (PB-PANI) occurs in diluted solutions. The experimental data showed that the solvent plays an important role on the nature of formed species. The narrow EPR signal at g = 2.006 (line width 8G) confirms the presence of PANI radical cations in Eu-PANI film. The absence of broad signal characteristic of Eu(II) in EPR spectrum suggested that europium ions are primarily at Eu(III) oxidation state. The luminescence spectra of Eu-PANI film presented emission bands at 405 and 418 nm assigned to PANI moieties and bands at 594,615 and 701 nm assigned to (5)D(0) -> (7)F(J) (J = 1, 2 and 4, respectively) transitions of Eu(III). EPR and photoluminescence data confirm that europium ions are mainly in Eu(III) oxidation state in Eu(III)/PANI films. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The analysis of the IR carbonyl band of the N-methoxy-N-methyl-2-[(4`-substituted)phenylthio]propanamides Y-PhSCH(Me)C(O)N(OMe)Me (Y=OMe 1, Me 2, H 3, Cl 4, NO(2) 5), supported by B3LYP/cc-pVDZ calculations of 3, indicated the existence of two gauche conformers (g(1) and g(2)), the g(1) conformer being the more stable and the less polar one (in gas phase and in solution). Both conformers are present in solution of the polar solvents (CH(2)Cl(2) and CH(3)CN) for 1-5 and in solution of the less polar solvent (CHCl(3)) for 1-4, while only the g(1) conformer is present in solution of non polar solvents (n-C(6)H(14) and CCl(4)) and in solution of CHCl(3) for 5. NBO analysis shows that both the sigma(C-S) -> pi*(C=O) (hyperconjugative) and the pi(C=O) -> sigma*(C-S) orbital interactions contribute almost to the same extent for the stabilization of g(1) and g(2) conformers. The pi*(C=O) -> sigma*(C-S), n(S) -> pi*(C=O) and the n(S) -> pi*(C=O) orbital interactions stabilize more the g(1) conformer than the g(2) one. Moreover, the suitable geometry of the g(1) conformer leads to its stabilization through the LP(O2) -> sigma*(C8-H11) orbital interaction (hydrogen bond) along with the strong O([CO])(delta-) center dot center dot center dot H([O-Ph])(delta+) electrostatic interaction. On the other hand, the appropriate geometry of the g(2) conformer leads to its stabilization by the LP(O22) -> sigma*(C9-H13) orbital interaction (hydrogen bond) along with the weak O([OMe])(delta-) center dot center dot center dot H([o`-Ph])(delta+) electrostatic static interaction. As for the 4`-nitro derivative 5 the ortho-phenyl hydrogen atom becomes more acidic, leading to a stronger O([CO])(delta-) center dot center dot center dot H([o-Ph])(delta+) interaction and, thus, into a larger stabilization of the g(1) conformer in the whole series. This trend is responsible for the unique IR carbonyl band in CHCl(3) solution of 5. The larger occupancy of the pi*(C=O) orbital of the g(1) conformer relative to that of the g(2) conformer, along with the O([CO])(delta-) center dot center dot center dot H([o-Ph])(delta+) electrostatic interaction (hydrogen bond) justifies the lower carbonyl frequency of the g(1) conformer with respect to the g(2) one, in gas phase and in solution. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The vibrational spectroscopic characterization of a sulfur dioxide visual sensor was carried out using a Raman microscope system. It was observed the formation of two distinct complexes, that were characterized by the position and relative intensities of the bands assigned to the symmetric stretching, nu(s)(SO(2)),of the linked SO(2) molecules. In fact, in the yellowish orange complex, that corresponds to the 1:1 stoichiometry, only one band is observed, assigned to nu(s)(SO(2)) at ca. 1080 cm-(1) and, in the deep red complex, that corresponds to the 1:2 complex, at ca. 1070 and 1090 cm(-)1 are observed. The variation of the relative intensities of the bands assigned to nu(s)(SO(2)) present in the Ni(II)center dot SO(2) complex, in different points of the sample, shows clearly the requirement of the Raman microscope in the vibrational characterization of this kind of molecular sensor. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Two porous mixed valent diruthenium(II,III)-dicarboxylate compounds have been prepared and characterized by spectroscopic methods, X-ray diffraction and thermogravimetry. Crystalline solids of [Ru(2)(tere)(2)Cl] center dot 3.5H(2)O (tere=terephthalate) and [Ru(2)(adip)(2)Cl] center dot 1.5H(2)O (adip=adipate) consist of extended chains in which polymeric layers of multiply metal-metal bonded [Ru(2)](5+) cores are bridged by dicarboxylate ligands in paddlewheel type geometries. Units of [Ru(2)(dicarboxylate)(2)](n)(+) are linked by axial bridging chloride ions generating three-dimensional networks. The polymers loose non-bonded water molecules at low temperatures but do not undergo thermal decomposition below 280-300 degrees C. Both of compounds exhibit high BET surface areas, [Ru(2)(tere)(2)Cl]: 235 m(2) g(-1) and [Ru(2)(adip)(2)Cl]: 281 m(2) g(-1), and occlude similar numbers of mol of N(2) per mol of metal. The terephthalate ligand generated an organized structure with supermicropores (total pore size of 0.24 cm(3) g(-1)) while the adipate ligand led to a mesoporous structure (total pore sizes of 0.47 cm(3) g(-1)) for the corresponding diruthenium(II,III)-dicarboxylate polymers. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The synthesis and characterization of lanthanide(III) citrates with stoichiometries 1:1 and 2:3; [LnL center dot xH(2)O] and [Ln(2)(LH)(3)center dot 2H(2)O], Ln=La, Ce, Pr, Nd, Sm and Eu are reported. L stands for (C6O7H5)(3-) and LH for (C6O7H6)(2-). Infrared absorption spectra of both series evidence coordination of carboxylate groups through symmetric bridges or chelation. X-ray powder patterns show the amorphous character of [LnL center dot xH(2)O]. The compounds [Ln(2)LH(3)center dot 2H(2)O] are crystalline and isomorphous. Emission spectra of Eu compounds suggest C-2v symmetry for the coordination polyhedron of [LnL center dot xH(2)O] and C-4v for [Ln(2)(LH)(3)center dot 2H(2)O]. Thermal analyses (TG-DTG-DTA) were carried out for both series. The thermal analysis patterns of the two series are quite different and both fit in a 4-step model of thermal decomposition, with lanthanide oxides as final products.
Resumo:
In the present work, nanocomposites of polyaniline (PANI) and layered alpha-Zr(HPO4)(2).H2O (alpha-ZrP) were prepared using two different approaches: (i) the in situ aniline polymerization in the presence of the layered inorganic material and (ii) the layer-by-layer (LBL) assembly using an aqueous solution of the polycation emeraldine salt (ES-PANI) and a dispersion of exfoliated negative slabs of alpha-ZrP. These materials were characterized spectroscopically using mainly resonance Raman scattering at four exciting radiations and electronic absorption in the UV-VIS-NIR region. Structural and textural characterizations were carried out using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The polymer obtained by the in situ aniline polymerization is located primarily in the external surface of the inorganic material although aniline monomers were intercalated between alpha-ZrP interlayer regions before oxidative polymerization. Through resonance Raman spectroscopy, it was observed that the formed polymer has semiquinone units (ES-PANI) and also azo bonds (-N = N-), showing that this method results in a polymer with a different structure from the usual ""head-to-tail"" ES-PANI. The LBL assembly of pre-formed ES-PANI and exfoliated alpha-ZrP particles produces homogeneous films with reproducible deposition from layer to layer, up to 20 bilayers. Resonance Raman (lambda(0) = 632.8 nm) spectrum of PANI/ZrP LBL film shows an enhancement in the intensity of the polaronic band at 1333 cm(-1) (nu C-N center dot+) and the decrease of the band intensity at 1485 cm(-1) compared to bulk ES-PANI. Its UV-VIS-NIR spectrum presents an absorption tail in the NIR region assigned to delocalized free charge carrier. These spectroscopic features are characteristic of highly conductive secondary doped PANI suggesting that polymeric chains in PANI/ZrP LBL film have a more extended conformation than in bulk ES-PANI.
Resumo:
The acylation of three cellulose samples by acetic anhydride, Ac(2)O, in the solvent system LiCl/N,N-dimethylacetamide, DMAc (4 h, 110 A degrees C), has been revisited in order to investigate the dependence of the reaction efficiency on the structural characteristics of cellulose, and its aggregation in solution. The cellulose samples employed included microcrystalline, MCC; mercerized cotton linters, M-cotton, and mercerized sisal, M-sisal. The reaction efficiency expresses the relationship between the degree of substitution, DS, of the ester obtained, and the molar ratio Ac(2)O/AGU (anhydroglucose unit of the biopolymer); 100% efficiency means obtaining DS = 3 at Ac(2)O/AGU = 3. For all celluloses, the dependence of DS on Ac(2)O/AGU is described by an exponential decay equation: DS = DS(o) - Ae(-[(Ac2O/AGU)/B]); (A) and (B) are regression coefficients, and DS(o) is the calculated maximum degree of substitution, achieved under the conditions of each experiment. Values of (B) are clearly dependent on the cellulose employed: B((M-cotton)) > B((M-sisal)) > B((MCC)); they correlate qualitatively with the degree of polymerization of cellulose, and linearly with the aggregation number, N(agg), of the dissolved biopolymer, as calculated from static light scattering measurements: (B) = 1.709 + 0.034 N(agg). To our knowledge, this is the first report on the latter correlation; it shows the importance of the physical state of dissolved cellulose, and serves to explain, in part, the need to use distinct reaction conditions for MCC and fibrous celluloses, in particular Ac(2)O/AGU, time, temperature.
Resumo:
The analysis of the IR carbonyl band of the N,N-diethyl-2-[(4`-substituted)phenylsulfonyl]acetamides Et(2)NC(O)CH(2)S(O)(2)-C(6)H(4)-Y (Y = OMe 1, Me 2,1-13, Cl 4, Br 5, NO(2) 6) supported by B3LYP/6-31G(d,p) calculations for 3, indicated the existence of three pairs (anti and syn) of cis (c) and gauche (g(1) and g(2)) conformers in the gas phase, being the gauche conformers significantly more stable than the cis ones. The anti geometry is more stable than the syn one, for each pair of cis and gauche conformers. The summing up of the orbital (NBO analysis) and electrostatic interactions justifies quite well the populations and the v(CO) frequencies of the anti and syn pairs of c, g(1) and g(2) conformers. The IR higher carbonyl frequency component whose population is ca. 10%, in CCl(4), may be ascribed to the least stable and most polar cis conformer pair (in the gas phase) and the lower frequency component whose population is ca. 90%, to the summing up of the populations of the two most stable and least polar gauche conformer pairs (g(1) and g(2)) (in the gas phase). The reversal of the cis(c)/gauche (g(1) + g(2)) population ratio observed in chloroform ca. 60% (cis)/40% (gauche) and the occurrence of the most polar cis(c) conformer only, in acetonitrile, strongly suggests the coalescence of the two gauche components in a unique carbonyl band in solution. A further support to this rationalization is given by the single point PCM solvation model performed by HF/6-31G(d,p) method, which showed a progressive increase of the c/(g(1) + g(2)) ratio going from gas to CCl(4), to CHCl(3) and to CH(3)CN. X-ray single crystal analysis of 4 indicates that this compound assumes, in the solid state, the syn-clinal (gauche) conformation with respect to the [O=C-CH(2)-S] moiety, and the most stable anti geometry relative to the [C(O)N(CH(2)CH(3))(2)] fragment. In order to obtain larger energy gain from the crystal packing the molecules of 4 are linked in centrosymmetric dimers through two C-H center dot center dot center dot O interactions (C-H([O-Ph])center dot center dot center dot O([SO2])) forming a step ladder. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The analysis of the IR nu(co) bands of the 2-ethylsulfinyl-(4`-substituted)-phenylthioacetates 4`-Y-C(6)H(4)SC(O)CH(2)S(O)Et (Y = NO(2) 1, Cl 2, Br 3, H 4, Me 5, OMe 6) supported by B3LY/6-31G(d,p) calculations along with the NBO analysis for 1.4 and 6 and X-ray analysis for 3, indicated the existence of four gauche (q-g-syn, g(3)-syn. g(1)-atin and q-g(2)-syn) conformers for 1-6 The calculations reproduce quite well the experimental results, i e the computed q-g-syn and g3-syn conformers correspond in the IR spectrum (in solution), to the nu(co) doublet higher frequency component of larger intensity, while the computed grant, conformer correspond to the nu(co) doublet lower frequency component (in solution) NBO analysis showed that the n(s) -> pi(center dot)(c1=o2), no(co) -> sigma(c1-s3), no(co) -> sigma(c1-c4) orbital interactions are the main factors which stabilize the q-g-syn, g(3)-syn, g(1)-anti and q-g(2)-syn conformers for 1, 4 and 6 The no(co) -> sigma(c1-s3) interaction which stabilizes the q-g-syn, g(3)-syn and q-g(2)-syn conformers into a larger extent than the granti conformer, is responsible for the larger tto frequencies of the former conformers relative to the latter one. The q-g-syn, g(3)-syn and q-g(2)-syn conformers are further stabilized sigma(c4-s5) -> pi(co)center dot (strong). pi(co)/sigma(c1-c4,) no(co) -> sigma(c6-H17[Et]) (weak) and pi(co)/sigma(c4-c5) pi(co) (strong) orbital interactions. The q-g-syn conformer is also stabilized by sigma(c4-s5) -> pi(center dot)(co) (strong), pi(co)/sigma(c4-c5).no(co) -> sigma(c6-H17[Et]), pi(C9=C11[ph]) -> sigma(c4-H6x-CH2]) (weak). no((SO)) -> sigma(C11-H23[ph]) (medium) pi(co)/sigma(c4-c5)(strong) orbital interactions. The q-g-syn conformei is further stabilized by the n(S5) O((C))(8-) S((SO))(8+) attractive Coulornbic interaction while the q-g(2)-syn conformer is destabilized by the n55 0,8c-0) repulsive Coulombic interaction. This analysis indicates the following conformer stabilization order. q-g-syn, g(3)-syn > g(1)-anti >> q-g(2)-syn X-ray single crystal analysis of 3 indicates that it assumes in the solid a distorted q-g(2)-syn geometry which is stabilized through almost the same orbital and Coulombic interaction which takes place for the q-g(2)-syn conformer, in the gas, along with dipole moment coupling and a series intermolecular C-HO0 interactions. (C) 2010 Elsevier B V All rights reserved
Resumo:
The analysis of the IR carbonyl band of the 2-substituted N-methoxy-N-methylacetamides Y-CH(2)C(O)-N(OMe)Me (Y = F1, OMe 2, OPh 3, Cl 4), supported by B3LYP/6-311++G(3df, 3pd) calculations along with the NBO analysis for 1-4, indicated the existence of cis-gauche conformers i.e. (c) and (g) for 1 and 3, (c(1), c(2)) and (g(1), g(2)) for 2, and (c) and (g(1), g(2)) for 4. In the gas phase, the g conformer population prevails over the c one, for 1 and 3, the (c(1) + c(2)) population prevails over the (g(1) + g(2)) one for 2, and the (g(1) + g(2)) conformer population is more abundant than (c) one for 4. In n-hexane solution, the cis conformer is more abundant for 1-3. The occurrence of Fermi resonance in the nu(CO) region, in n-hexane, precludes the estimative of relative populations of the (c, g(1), g(2)) conformers for 4. The SCI-PCM calculations agree with the solvent effect on the nu(CO) band component relative intensities for 1-3. NBO analysis showed that the n(N) -> pi.(CO), orbital interaction is the main factor which stabilizes the gauche (g, g(1), g(2)) conformers for 1-4 into a larger extent relative to the cis (c, c(1), c(2)) ones. The n(y) -> pi(.)(Co,) sigma(C-Y) -> pi.(CO,) pi(CO) -> sigma(C-Y) and 7co orbital interactions still contribute, but into a minor extent for the stabilization of the gauche conformers relative to the cis ones. The existence of some pyramidalization at the nitrogen atom of the Weinreb amides 1-4 is responsible for the occurrence of Y(delta)-(4)center dot center dot center dot O(delta)-(9) and Y(delta)-(4)center dot center dot center dot N(delta)-(7) short contacts in the gauche (g, g(1), g(2)) conformers, which originates strong repulsive Coulombic interactions, acting in opposition to the large orbital stabilization of the gauche conformer with respect to the cis one. Therefore, a delicate balance of the Coulombic and orbital interactions seems to be responsible for the observed stabilization of the gauche (g, g(1), g(2)) and cis (c, c(1), c(2)) conformers, both in the gas phase and in the solution for 1-4. However, the cis conformer predominance, in non polar solvents, for the 2-substituted N-methoxy-N-methyl acetamides 1-3, bearing in a first raw (fluorine and oxygen) atoms, is in the opposite direction to the gauche conformer preference for the corresponding 2-substituted N,N-dialkyl-acetamides. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The conformational features of three 2-sulphur-substituted cyclohexanone derivatives, which differ in the number of sulphur-bound oxygen atoms, i.e. zero (I), one (II) and two (III), were investigated by single crystal X-ray crystallography and geometry optimized structures determined using Hartree-Fock method. In each of (I)-(III) an intramolecular S center dot center dot center dot O(carbonyl) interaction is found with the magnitude correlated with the oxidation state of the sulphur atom, i.e. 2.838(3) angstrom in (I) to 2.924(2) angstrom in (II) to 3.0973(18) angstrom in (III). There is an inverse relationship between the strength of this interaction and the magnitude of the carbonyl bond. The supramolecular aggregation patterns are primarily determined by C-H center dot center dot center dot O contacts and are similarly influenced by the number of oxygen atoms in the molecular structures. Thus, a supramolecular chain is found in the crystal structure of (I). With an additional oxygen atom available to participate in C-H center dot center dot center dot O interactions, as in (II), a two-dimensional array is found. Finally, a three-dimensional network is found for (III). Despite there being differences in conformations between the experimental structures and those calculated in the gas-phase, the S center dot center dot center dot O interactions persist. The presence of intermolecular C-H center dot center dot center dot O interactions involving the cyclohexanone-carbonyl group in the solid-state, disrupts the stabilising intramolecular C-H center dot center dot center dot O interaction in the energetically-favoured conformation. (I): C(12)H(13)NO(3)S, triclinic space group P (1) over bar with a = 5.392(3) angstrom b = 10.731(6) angstrom, c = 11.075(6) angstrom, alpha = 113.424(4)degrees, beta = 94.167(9)degrees, gamma = 98.444(6)degrees, V = 575.5(6) angstrom(3), Z = 2, R(1) = 0.052; (II): C(12)H(13)NO(4)S, monoclinic P2(1)/n, a = 7.3506(15) angstrom, b = 6.7814(14) angstrom, c = 23.479(5) angstrom, beta = 92.94(3)degrees, V = 1168.8(4) angstrom(3), Z = 4, R(1) = 0.046; (III): C(12)H(13)NO(5)S, monoclinic P2(1)/c, a = 5.5491(11) angstrom, b = 24.146(3) angstrom, c = 11.124(3) angstrom, beta = 114.590(10)degrees, V = 1355.3(5) angstrom(3), Z = 4, R(1) = 0.051.
Resumo:
The (1)H NMR spectra of N-methoxy-N-methyl-2-[(4`-substituted)phenylsulfinyl]-propanamides [Y-Ph-S(O)CH(Me)C(O)N(OMe)Me; Y = OMe 1, Me 2, H 3. Cl 4, NO(2) 5] along with the X-ray diffraction analysis of the nitro-derivative (5). have shown the existence of two pairs of diastereomers (racemic mixture) [C(R)S(S)/C(S)S(R) (diast(1)) and C(R)S(R)/C(S)S(S) (diast(2))] in the ratio of ca. 7:3. respectively. The v(CO) IR analysis of the title compounds supported by HF and B3LYP/6-31G** calculations of 3 and of the parent N-methoxy-N-methyl-propanamide (6) by HF, have shown that diast(1) exists in an equilibrium between the two more polar and more stable quasi-cis (q-c(1) and q-c(2)) conformers and the gauche(g) conformer. The population of the g conformer in the equilibrium increases with the increase in the solvent polarity, which is attributed to a larger solvation effect on the carbonyl and sulfinyl groups. Diast(2) of compound 3 occurs in the gas phase as an equilibrium between the most stable quasi-gauche (q-g) conformer and the quasi-cis (q-c) conformer, both presenting very similar dipole moments. The former is stabilized by electrostatic and charge transfer interactions, which results in a less solvated spatial arrangement. Moreover, all conformers of both diastereomers are stabilized by several intramolecular hydrogen bonds. X-ray single crystal analysis performed for diast(1) and for diast(2) of 5 indicates that both stereoisomers assume, in the solid state, the anti-clinal (gauche) conformation. For the crystal packing, diast(1) of 5 is made up of three molecules joined through two centro-symmetric H center dot center dot center dot O hydrogen bonds. (C) 2008 Elsevier B.V. All rights reserved.