247 resultados para 291400 Materials Engineering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coaracy Nunes was the first hydroelectric power plant in the Amazon region, being located in Araguari River, Amapa State, Brazil. The plant operates since 1976, presenting now a nominal capacity of 78 MW. The shear pins, which are installed in the turbine hydraulic arms to control the wicket gate and regulate the water flow into the turbine blades, suffered several breakdowns since 2004. These shear pins are made of an ASTM 410 stainless steel and were designed to break by a shear overload of 120 kN. Fractographic investigation of the pins, however, revealed two types of fracture topographies: a region of stable crack propagation area, with non-pronounced striation and secondary cracks; and a region of unstable propagation, featuring elongated dimples. These results indicated that the stable crack propagation occurred by fatigue (bidirectional bending), which was nucleated at machining marks under high nominal load. Finite element analysis was carried out using two loading conditions (pure shear and a combination of shear and bending) and the results indicated that the presence of a bending stress strongly increased the stress concentration factor (85% rise in the shear stress and 130% rise in the Von Mises stress). Misalignment during shear pins assembly associated with vibration might have promoted the premature failure of the shear by bending fatigue. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medium carbon steels are mostly used for simple applications; however, new applications have been developed for which good sheet metal formability is required. These types of steels have an inherent low formability. A medium-carbon hot-rolled SAE 1050 steel was selected for this study. It has been cold rolled with thickness reductions varying between 7 and 80%. The samples obtained were used to evaluate the strain hardening curve. For samples with a 50 and 80% thickness reduction, an annealing heat treatment was performed to achieve recrystallization. The material was characterized in the ""as-received"", cold rolled and annealed conditions using several methods: optical metallography, X-ray diffraction (texture), Vickers hardness, and tensile testing. For large thickness reductions, the SAE 1050 steel presented low elongation, less than 2%, and yield strength (YS) and tensile strength (TS) around 1400 MPa. Texture in the ""as-received"" condition showed strong components on the {001} plane, in the < 100 >, < 210 > and (110) directions. After cold rolling, the texture did not present any significant changes for small thickness reductions, however. It changed completely for large ones, where gamma, < 111 >//ND, alpha, < 110 > HRD, and gamma prime, < 223 >//ND, fibres were strengthened. After annealing, the microstructure of the SAE 1050 steel was characterized by recrystallized ferrite and globular cementite. There was little change in the alpha fibre for the 50% reduction, whereas for the 80% reduction, its intensity increased. Both gamma and gamma prime fibres vanished upon annealing for 50 and 80% reductions alike. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wetting balance tests of copper sheets submerged in tin solder baths were carried out in a completely automatic wetting balance. Wetting curves were examined for three different values of sheet thickness and four different solder bath temperatures. Most of the wetting curves showed a distorted shape relative to that of a standard curve, preventing calculation of important wetting parameters, such as the wetting rate and the wetting force. The wetting tests showed that the distortion increased for a thicker sheet thickness and a lower solder bath temperature, being the result of solder bath solidification around the submerged sheet substrate. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of new phenyl-based conjugated copolymers has been synthesized and investigated by vibrational and photoluminescence spectroscopy (PL). The materials are: poly( 1,4-phenylene-alt-3,6-pyridazine) (COP-PIR), poly(9,9-dioctylfluorene)-co-quaterphenylene (COP-PPP) and poly[(1,4-phenylene-alt-3,6-pyridazine)-co-(1,4-phenylene-alt-9,9-dioctylfluorene)] (COP-PIR-FLUOR), with 3.5% of fluorene. COP-PPP and COP-PIR-FLUOR have high fluorescence quantum yields in solution. Infrared and Raman spectra were used to check the chemical structure of the compounds. The copolymers exhibit blue emission ranging front 2.8 to 3.6 eV when excited at E(exc)=4.13 eV. Stokes-shift Values were estimated on pristine samples in their condensed state from steady-state PL-emission and PL-excitation spectra. They suggest a difference in the torsional angle between the molecular configuration of the polymer blocks at the absorption and PL transitions and also in the photoexcitation diffusion. Additionally, the time-resolved PL of these materials has been investigated by using 100 fs laser pulses at E(exc)=4.64 eV and a streak camera. Results show very fast biexponential kinetics for the two fluorene-based polymers with decay times below 300 ps indicating both intramolecular, fast radiative recombination and migration of photogenerated electron-hole pairs. By contrast, the PL of COP-PIR is less intense and longer lived, indicating that excitons are confined to the chains in this polymer. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metastable phase diagram of the BCC-based ordering equilibria in the Ti-Fe system has been calculated using a truncated cluster expansion, through the combination of FP-LAPW and cluster variation method (CVM) in the irregular tetrahedron cluster approximation. The results are compared with phenomenological CVM assessments of the system and suggest that the value for the experimental formation enthalpy of the B2-TiFe compound should be significantly more negative than the currently assessed value. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medium carbon steels are mostly used for simple applications; nevertheless new applications have been developed for which good sheet formability is required. This class of steels has an inherent low formability. A medium carbon hot rolled SAE 1050 steel has been selected for this study. It has been cold rolled with reductions in the 7-80% range. Samples have been used to assess the cold work hardening curve. For samples with a 50 and 80% thickness reduction, an annealing heat treatment has been performed to obtain recrystallization. The material has been characterized in the ""as received"", cold rolled and annealed conditions, using several methods: optical microscopy, X-ray diffraction (texture), Vickers hardness and tensile testing. The 50% cold rolled and recrystallized material has been further studied in terms of sheet metal formability and texture evolution during the actual stamping of a steel toecap that has been used to validate the finite element simulations. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Directional solidification of molten metallurgical-grade Si was carried out in a vertical Bridgman furnace. The effects of changing the mold velocity from 5 to 110 mu m seconds(-1) on the macrosegregation of impurities during solidification were investigated. The macrostructures of the cylindrical Si ingots obtained in the experiments consist mostly of columnar grains parallel to the ingot axis. Because neither cells nor dendrites can be observed on ingot samples, the absence of precipitated particles and the fulfillment of the constitutional supercooling criterion suggest a planar solid-liquid interface for mold velocities a parts per thousand currency sign10 mu m seconds(-1). Concentration profiles of several impurities were measured along the ingots, showing that their bottom and middle are purer than the metallurgical Si from which they solidified. At the ingot top, however, impurities accumulated, indicating the typical normal macrosegregation. When the mold velocity decreases, the macrosegregation and ingot purity increase, changing abruptly for a velocity variation from 20 to 10 mu m seconds(-1). A mathematical model of solute transport during solidification shows that, for mold velocities a parts per thousand yen20 mu m seconds(-1), macrosegregation is caused mainly by diffusion in a stagnant liquid layer assumed at the solid-liquid interface, whereas for lower velocities, macrosegregation increases as a result of more intense convective solute transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance optimisation of overhead conductors depends on the systematic investigation of the fretting fatigue mechanisms in the conductor/clamping system. As a consequence, a fretting fatigue rig was designed and a limited range of fatigue tests was carried out at the middle high cycle fatigue regime in order to access an exploratory S-N curve for a Grosbeak conductor, which was mounted on a mono-articulated aluminium clamping system. Subsequent to these preliminary fatigue tests, the components of the conductor/clamping system, such as ACSR conductor, upper and lower clamps, bolt and nuts, were subjected to a failure analysis procedure in order to investigate the metallurgical free variables interfering on the fatigue test results, aiming at the optimisation of the testing reproducibility. The results indicated that the rupture of the planar fracture surfaces observed in the external At strands of the conductor tested under lower bending amplitude (0.9 mm) occurred by fatigue cracking (I mm deep), followed by shear overload. The V-type fracture surfaces observed in some At strands of the conductor tested under higher bending amplitude (1.3 mm) were also produced by fatigue cracking (approximately 400 mu m deep), followed by shear overload. Shear overload fracture (45 degrees fracture surface) was also observed on the remaining At wires of the conductor tested under higher bending amplitude (1.3 mm). Additionally, the upper and lower Al-cast clamps presented microstructure-sensitive cracking, which was folowed by particle detachment and formation of abrasive debris on the clamp/conductor tribo-interface, promoting even further the fretting mechanism. The detrimental formation of abrasive debris might be inhibited by the selection of a more suitable class of as-cast At alloy for the production of clamps. Finally, the bolt/nut system showed intense degradation of the carbon steel nut (fabricated in ferritic-pearlitic carbon steel, featuring machined threads with 190 HV), with intense plastic deformation and loss of material. Proper selection of both the bolt and nut materials and the finishing processing might prevent the loss in the clamping pressure during the fretting testing. It is important to control the specification of these components (clamps, bolt and nuts) prior to the start of large scale fretting fatigue testing of the overhead conductors in order to increase the reproducibility of this assessment. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical blocking of the columnar front during the columnar to equiaxed transition (CET) is studied by quantitatively comparing the CET positions obtained with one stochastic model and two deterministic models for the unidirectional solidification of an Al-7 (wt pct) Si alloy. One of the deterministic models is based on the solutal blocking of the columnar front, whereas the other model is based on the mechanical blocking. The solutal-blocking model and the mechanical-blocking model with the traditional blocking fraction of 0.49 give columnar zones larger than those predicted with the stochastic model. When a blocking fraction of 0.2 is adopted, however, the agreement is very good for a range of nucleation undercoolings and number density of equiaxed grains. Therefore, changing the mechanical-blocking fraction in deterministic models from 0.49 to 0.2 seems to model more accurately the mechanical-blocking process that can lead to the CET.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several composites based on high-density polyethylene (PE), organically modified montmorillonite (OMMT) and ethylene/methacrylic acid copolymer (EMAA) were prepared by melt compounding. Three Na(+)-montmorillonites (MMT) of different precedence were modified with hexadecyl trimethyl ammonium chloride in order to change their nature from hydrophilic to organophilic. The composites morphology was examined by XRD, SEM and TEM. Mechanical properties were evaluated under static conditions. A slight reinforcement was achieved only when OMMT was added to PE. When EMAA was added to the composites, it negatively interacted with OMMT, diminishing the interlayer distance of OMMT, changing the composite morphology, as if OMMT was not present in composites, and deteriorating their mechanical properties. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Before one models the effect of plastic deformation on magnetoacoustic emission (MAE), one must first treat non-180 degrees domain wall motion. In this paper, we take the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model and modify it to treat non-180 degrees wall motion. We then insert a modified stress-dependent Jiles-Atherton model, which treats plastic deformation, into the modified ABBM model to treat MAE and magnetic Barkhausen noise (HBN). In fitting the dependence of these quantities on plastic deformation, we apply a model for when deformation gets into the stage where dislocation tangles are formed, noting two chief effects, one due to increased density of emission centers owing to increased dislocation density, and the other due to a more gentle increase in the residual stress in the vicinity of the dislocation tangles as deformation is increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical behaviour of a near-beta Ti-13Nb-13Zr alloy for the application as implants was investigated in various solutions. The electrolytes used were 0.9 wt% NaCl solution, Hanks` solution and a culture medium known as minimum essential medium (MEM) composed of salts, vitamins and amino acids, all at 37 degrees C. The electrochemical behaviour was investigated by the following electrochemical techniques: open circuit potential measurements as a function of time, electrochemical impedance spectroscopy (EIS) and determination of polarisation curves. The obtained results showed that the Ti alloy was passive in all electrolytes. The EIS results were analysed using an equivalent electrical circuit representing a duplex structure oxide layer, composed of an inner barrier layer, mainly responsible for the alloy corrosion resistance, and an outer and porous layer that has been associated to osteointegration ability. The properties of both layers were dependent on the electrolyte used. The results suggested that the thickest porous layer is formed in the MEM solution whereas the impedance of the barrier layer formed in this solution was the lowest among the electrolytes used. The polarisation curves showed a current increase at potentials around 1300 mV versus saturated calomel electrode (SCE), and this increase was also dependent on the electrolyte used. The highest increase in current density was also associated to the MEM solution suggesting that this is the most aggressive electrolyte to the Ti alloy among the three tested solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The premature failure of a horizontal heat-exchanger, which occurred after service exposure at 580 degrees C for 50,000 h, revealed the occurrence of extensive through-thickness cracking in approximately 40% of the tube/stationary tube-sheet welds. Additionally, the internal surface of the welded joint featured intensive secondary intergranular cracking (up to 250 mu m deep), preferential formation of a 150 mu m thick layer of (Fe, Cr)(3)O-4 and internal intergranular oxidation (40 mu m deep). The welded region also showed intense carbon pick-up and, as consequence, severe precipitation of intergranular M7C3 and M23C6 carbides. The fracture surface was composed of two distinct regions: a ""planar"" region of 250 mu m, formed due to the stable crack growth along by the intergranular oxidation; and a slant region with radial marks, formed by the fast crack growth along the network of intergranular carbides. The association of intergranular oxidation pre-cracks with microstructural embrittlement promoted the premature failure, which took place by an overload mechanism, probably due to the jamming of the floating tube-sheet during the maintenance halt (cooling operation). (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to study MnO reduction by solid carbon. The influence of size of carbon particles, slag basicity, and bath temperature on MnO reduction was investigated. Fine Manganese ore particles were used as a source of MnO. Three sizes of carbon particles were used; 0.230 mm, 0.162 mm and 0.057 mm, binary basicity of 1 and 1.5 and temperatures of 1550, 1550 and 1600 degrees C. Curves were drawn for Mn content in the bath as a function of time and temperature for the several studied parameters. The MnO reduction rates were determined using these data. [doi:10.2320/matertrans.M2011007]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A processing route has been developed for recovering the desired lambda fiber in iron-silicon electrical steel needed for superior magnetic properties in electric motor application. The lambda fiber texture is available in directionally solidified iron-silicon steel with the < 001 > columnar grains but was lost after heavy rolling and recrystallization required for motor laminations. Two steps of light rolling each followed by recrystallization were found to largely restore the desired fiber texture. This strengthening of the < 001 > fiber texture had been predicted on the basis of the strain-induced boundary migration (SIBM) mechanism during recrystallization of lightly rolled steel from existing grains of near the ideal orientation, due to postulated low stored energies. Taylor and finite element models supported the idea of the low stored energy of the lambda fiber grains. The models also showed that the lambda fiber grains, though unstable during rolling, only rotated away from their initial orientations quite slowly.