237 resultados para Thermal Performance Regulation
Resumo:
Feed is responsible for about 70% of broilers production costs, leading to an increasing number of studies on alternative dietary products that benefit bird performance and lower production costs. Since the 1950s, antimicrobial additives are the most frequently used performance enhancers in animal production and their positive results are observed even in high-challenge conditions. Since the 1990s, due to the ban of the use of some antibiotics as growth promoters and the growing trend of the public to consume natural products, plant extracts have been researched as alternatives to antibiotic growth promoters. The first study that evaluated the antibacterial activities of plant extracts was carried out in 1881; however, they started to be used as flavor enhancers only during the next decades. With the emergence of antibiotics in the 1950s, the use of plant extracts as antimicrobial agents almost disappeared. There are several studies in literature assessing the use of plant extracts, individually or in combination, as antimicrobials, antioxidants, or digestibility enhancers in animal feeds. Research results on the factors affecting their action, such as plant variety, harvest time, processing, extraction, as well as the technology employed to manufacture the commercial product and dietary inclusion levels show controversial results, warranting the need of further research and standardization for the effective use of plant extracts as performance enhancers, when added to animal feeds. This article aims at presenting plant extracts as alternatives to antibiotics, explaining their main modes of action as performance enhancers in broiler production.
Resumo:
Mature pregnant crossbred ewes (n = 90) were used in a randomized complete block design experiment and were assigned to 1 of 3 winter-feeding systems differing in primary feed source: haylage (HL), limit-fed corn (CN), or limit-fed dried distillers grains (DDGS). Effects of these winter-feeding strategies on postweaning progeny performance were determined. Lamb progeny (n = 96) were weaned at 61 +/- 4 d of age and fed a common high-concentrate diet. Lambs were assigned to feedlot pen (n = 18) based on dam mid-gestation pen. Growth rate, DMI, and ADG were determined for the first 40 d of the finishing period. At 96 +/- 4 d of age, 1 wether lamb was randomly selected from each pen (n = 18) for a glucose tolerance test. The experiment was terminated, and lambs were slaughtered individually when they were determined to have achieved 0.6-cm 12th-rib fat thickness. After a 24-h chill, carcass data were collected and a 2.54-cm chop was removed from each lamb from the LM posterior to the 12th rib for ether extract analysis. Additional carcass measurements of bone, muscle, and fat from the shoulder, rack, loin, and leg were collected on 35 carcasses. At weaning, lamb BW was not different among treatments, whereas final BW tended to be greater (P = 0.09) for lambs from ewes fed DDGS and CN during gestation than from those fed HL. Overall lamb growth rate from birth to slaughter was not different among treatments. Lambs from ewes fed DDGS vs. CN or HL tended to have a greater initial insulin response (P = 0.09). Dressing percent was less (P = 0.04) in lambs from ewes fed DDGS, but no difference (P = 0.16) was detected in HCW among treatments. As expected, 12th rib fat thickness was similar among treatments, whereas LM area was largest to smallest (P = 0.05) in lambs from ewes fed CN, HL, and DDGS, respectively. Proportion of internal fat tended to be greatest to smallest (P = 0.06) in lambs from ewes fed DDGS, CN, and HL, respectively. Calculated boneless trimmed retail cuts percentage was less (P = 0.04) in lambs from ewes fed DDGS than CN or HL. Loin muscle weight as a percentage of wholesale cut tended (P = 0.10) to be greater in lambs from ewes fed CN and HL than DDGS, whereas other muscle, bone, and fat weights and proportions were similar (P > 0.24) among treatments. Prepartum diet during mid to late gestation of ewes altered postnatal fat and muscle deposition and may be associated with alterations in insulin sensitivity of progeny.
Resumo:
Rapid alkalinization factor (RALF) is part of a growing family of small peptides with hormone characteristics in plants. Initially isolated from leaves of tobacco plants, RALF peptides can be found throughout the plant kingdom and they are expressed ubiquitously in plants. We took advantage of the small gene family size of RALF genes in sugarcane and the ordered cellular growth of the grass sugarcane leaves to gain information about the function of RALF peptides in plants. Here we report the isolation of two RALF peptides from leaves of sugarcane plants using the alkalinization assay. SacRALF1 was the most abundant and, when added to culture media, inhibited growth of microcalli derived from cell suspension cultures at concentrations as low as 0.1 mu M. Microcalli exposed to exogenous SacRALF1 for 5 days showed a reduced number of elongated cells. Only four copies of SacRALF genes were found in sugarcane plants. All four SacRALF genes are highly expressed in young and expanding leaves and show a low or undetectable level of expression in expanded leaves. In half-emerged leaf blades, SacRALF transcripts were found at high levels at the basal portion of the leaf and at low levels at the apical portion. Gene expression analyzes localize SacRALF genes in elongation zones of roots and leaves. Mature leaves, which are devoid of expanding cells, do not show considerable expression of SacRALF genes. Our findings are consistent with SacRALF genes playing a role in plant development potentially regulating tissue expansion.
Resumo:
Researchers working with thermal comfort have been using enthalpy to measure thermal energy inside rural facilities, establishing indicator values for many situations of thermal comfort and heat stress. This variable turned out to be helpful in analyzing thermal exchange in livestock systems. The animals are exposed to an environment which is decisive for the thermoregulatory process, and, consequently, the reactions reflect states of thermal comfort or heat stress, the last being responsable for problems of sanity, behavior and productivity. There are researchers using enthalpy as a qualitative indicator of thermal environment of livestock such as poultry, cattle and hogs in tropical regions. This preliminary work intends to check different enthalpy equations using information from classical thermodynamics, and proposes a direct equation as thermal comfort index for livestock systems.
Resumo:
To determine the effect of sensor placement on the performance of a disease-warning system for sooty blotch and flyspeck (SBFS), we measured leaf wetness duration (LWD) at 12 canopy positions in apple trees, then simulated operation of the disease-warning system using LWD measurements from different parts of the canopy. LWD sensors were placed in four trees within one Iowa orchard during two growing seasons, and in one tree in each of four orchards during a single growing season. The LWD measurements revealed substantial heterogeneity among sensor locations. In all data sets, the upper, eastern portion of the canopy had the longest mean daily LWD, and was the first site to form dew and the last to dry. The lower, western portion of the canopy averaged about 3 It less LWD per day than the top of the canopy, and was the last zone where dew formed and the first to dry off. On about 25% of nights when dew occurred in the top of the canopy, no dew formed in the lower, western canopy. Intracanopy variability of LWD was more pronounced when dew was the sole source of wetness than on days when rainfall occurred. Daily LWD in the upper, eastern portion of the canopy was slightly less than reference measurements made at a 0.7-m height over turfgrass located near the orchard. When LWD measurements from several canopy positions were input to the SBFS warning system, timing of occurrence of a fungicide-spray threshold varied by as much as 30 days among canopy positions. Under Iowa conditions, placement of an LWD sensor at an unobstructed site over turfgrass was a fairly accurate surrogate for the wettest part of the canopy. Therefore, such an extra-canopy LWD sensor might be substituted for a within-canopy sensor to enhance operational reliability of the SBFS warning system.
Resumo:
The effect of thermal treatment on phenolic compounds and type 2 diabetes functionality linked to alpha-glucosidase and alpha-amylase inhibition and hypertension relevant angiotensin I-converting enzyme (ACE) inhibition were investigated in selected bean (Phaseolus vulgaris L,) cultivars from Peru and Brazil using in vitro models. Thermal processing by autoclaving decreased the total phenolic content in all cultivars, whereas the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity-linked antioxidant activity increased among Peruvian cultivars, alpha-Amylase and alpha-glucosidase inhibitory activities were reduced significantly after heat treatment (73-94% and 8-52%, respectively), whereas ACE inhibitory activity was enhanced (9-15%). Specific phenolic acids such as chlorogenic and caffeic acid increased moderately following thermal treatment (2-16% and 5-35%, respectively). No correlation was found between phenolic contents and functionality associated to antidiabetes and antihypertension potential, indicating that non phenolic compounds may be involved. Thermally processed bean cultivars are interesting sources of phenolic acids linked to high antioxidant activity and show potential for hypertension prevention.
Resumo:
Vitamin PP includes two vitamers, niacin and niacinamide which are essential for energy production. Vitamins are sensitive and losses can occur during shelf life and heating processes. Thermal analysis can provide information about thermal behavior of each vitamer relating them with time and/or temperature exposure. The vitamers thermal behavior were studied by TG/DTG and DSC under air and nitrogen atmosphere and the results showed that niacin is more stable than the niacinamide and the decomposition happens by volatilization at 238 A degrees C while niacinamide melts at 129 A degrees C and volatilize at 254 A degrees C when there is the total mass loss in the TG/DTG curves.
Resumo:
The effects of different cooking conditions such as soaking, atmospheric (100 degrees C) or pressure boiling (121 degrees C), and draining of cooking water following thermal treatment on phenolic compounds and the DPPH radical scavenging capacity from two selected Brazilian bean cultivars (black and yellow-brown seed coat color) were investigated using a factorial design (2(3)). Factors that significantly reduced the total phenolic contents and antioxidant capacity in both cultivars were the soaking and draining stage. Independent of cooking temperature, total phenolics and antioxidant capacities were enhanced in treatments without soaking and where cooking water was not discarded, and this was likely linked to an increase of specific phenolic compounds detected by high performance liquid chromatography such as flavonols and free phenolic acids in both cultivars. Cooking of beans either at 100 or 121 degrees C, without a soaking stage and keeping the cooking water, would be recommendable for retaining antioxidant phenolic compounds.
Resumo:
The objective of this research was to verify the effect of drying conditions on thermal properties and resistant starch content of green banana flour (Musa cavendishii). The green banana flour is a complex-carbohydrates source, mainly of resistant starch, and quantifying its gelatinization is important to understand how it affects food processing and the functional properties of the flour. The green banana flour was obtained by drying unripe peeled bananas (first stage of ripening) in a dryer tunnel at 52 degrees C, 55 degrees C and 58 degrees C and air velocity at 0.6 m s(-1), 1.0 m s(-1) and 1.4 m s(-1). The results obtained from differential scanning calorimetry, (DSC) curves show a single endothermic transition and a flow of maximum heating at peak temperatures from (67.95 +/- 0.31)degrees C to (68.63 +/- 0.28) degrees C. ANOVA shows that only drying temperature influenced significantly (P < 0.05) the gelatinization peak temperature (Tp). Gelatinization enthalpy (Delta H) varied from 9.04 J g(-1) to 11.63 J g(-1) and no significant difference was observed for either temperature or air velocity. The resistant starch content of the flour produced varied from (40.9 +/- 0.4) g/100 g to (58.5 +/- 5.4) g/100 g, on dry basis (d. b.), and was influenced by the combination of drying conditions: flour produced at 55 degrees C/1.4 m s(-1) and 55 degrees C/1.0 m s(-1) presented higher content of resistant starch. (c) 2009 Elsevier Ltd. All rights reserved
Resumo:
Pathogen detection in foods by reliable methodologies is very important to guarantee microbilogical safety. However, peculiar characteristics of certain foods, such as autochthonous microbiota, can directly influence pathogen development and detection. With the objective of verifying the performance of the official analytical methodologies for the isolation of Listeria monocytogenes and Salmonella in milk, different concentrations of these pathogens were inoculated in raw milk treatments with different levels of mesophilic aerobes, and then submitted to the traditional isolation procedures for the inoculated pathogens. Listeria monocytogenes was inoculated at the range of 0.2-5.2 log CFU/mL in treatments with 1.8-8.2 log CFU/mL. Salmonella Enteritidis was inoculated at 0.9-3.9 log CFU/mL in treatments with 3.0-8.2 log CFU/mL. The results indicated that recovery was not possible or was more difficult in the treatments with high counts of mesophilic aerobes and low levels of the pathogens, indicating interference of raw milk autochthonous microbiota. This interference was more evident for L. monocytogenes, once the pathogen recovery was not possible in treatments with mesophilic aerobes up to 4.0 log CFU/mL and inoculum under 2.0 log CFU/mL. For S. Enteritidis the interference appeared to be more non-specific. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Drinking hot mate has been associated with risk for esophageal cancer in South America. Thus. the aims of this study were to evaluate the modifying effects of mate intake on DNA damage and esophageal carcinogenesis induced by diethylnitrosamine (DEN) and thermal injury (TI) in male Wistar rats. At the initiation phase of carcinogenesis, rats were treated with DEN (8 x 80 mg/kg) and submitted to TI (water at 65 degrees C, 1 ml/rat, instilled into the esophagus). Concomitantly, the animals received mate (2.0% w/v) for 8 weeks. Samples of peripheral blood were collected 4 h after the last DEN application for DNA damage analysis. At weeks 8 and 20, samples from esophagus and liver were also collected for histological and immunohistochemical analysis. Mate significantly decreased DNA damage in leukocytes, cell proliferation rates in both esophagus and liver and the number of preneoplastic liver lesions from DEN/TI-treated animals at week 8. A significant lower incidence of esophageal papillomas and liver adenomas and tumor multiplicity was observed in the animals previously treated with mate at week 20. Thus, mate presented protective effects against DNA damage and esophageal and liver carcinogenesis induced by DEN. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
CYP3A4 and CYP3A5 are cytochrome P450 enzymes that are highly expressed in the liver and gut and metabolize endogenous compounds and xenobiotics. Statins are cholesterol-lowering drugs that are extensively metabolized by CYP3A4 and CYP3A5. The bioavailability of statins is affected by CYP3A4 and CYP3A5 and glucuronidases metabolism as well as uptake and efflux transporters that affect drug disposition. CYP3A4 and CYP3A5 variants have been demonstrated to influence the pharmacokinetics, efficacy and safety of statins. Inducers and inhibitors of CYP3A4 and CYP3A5 play an important role in reducing statin efficacy and increase the risk of adverse effects, respectively. Statins have been demonstrated to increase CYP3A expression in vitro, most likely because they are ligands to nuclear receptors (pregnane X receptor and constitutive androsterone receptor) that form heterodimers with retinoid X receptors and bind to responsive elements in the CYP3A4 and CYP3A5 promoter regions. This special report outlines the earlier studies on variability of response to statins owing to CYP3A variants and highlights findings on the induction of CYP3A4 and CYP3A5 expression by statins.
Resumo:
Objective-Nitro-fatty acids (NO(2)-FAs) are emerging as a new class of cell signaling mediators. Because NO(2)-FAs are found in the vascular compartment and their impact on vascularization remains unknown, we aimed to investigate the role of NO(2)-FAs in angiogenesis. Methods and Results-The effects of nitrolinoleic acid and nitrooleic acid were evaluated on migration of endothelial cell (EC) in vitro, EC sprouting ex vivo, and angiogenesis in the chorioallantoic membrane assay in vivo. At 10 mu mol/L, both NO(2)-FAs induced EC migration and the formation of sprouts and promoted angiogenesis in vivo in an NO-dependent manner. In addition, NO(2)-FAs increased intracellular NO concentration, upregulated protein expression of the hypoxia inducible factor-1 alpha (HIF-1 alpha) transcription factor by an NO-mediated mechanism, and induced expression of HIF-1 alpha target genes, such as vascular endothelial growth factor, glucose transporter-1, and adrenomedullin. Compared with typical NO donors such as spermine-NONOate and deta-NONOate, NO(2)-FAs were slightly less potent inducers of EC migration and HIF-1 alpha expression. Short hairpin RNA-mediated knockdown of HIF-1 alpha attenuated the induction of vascular endothelial growth factor mRNA expression and EC migration stimulated by NO(2)-FAs. Conclusion-Our data disclose a novel physiological role for NO(2)-FAs, indicating that these compounds induce angiogenesis in an NO-dependent mechanism via activation of HIF-1 alpha. (Arterioscler Thromb Vasc Biol. 2011;31:1360-1367.)
Resumo:
The aim of this study was to investigate how beaker size, basket assembly, use of disk, and immersion medium impact the disintegration time of dietary supplements. The disintegration times were determined for five tablet and two capsule products. A two-station disintegration tester was used with Apparatus A or Apparatus B as described in the United States Pharmacopeia (USP) chapters, < 701 > and < 2040 >. Two beakers complying with the harmonized specifications were used, one with a volume of 1,000 mL and one with a 1,500-mL volume. The disintegration data were analyzed using ANOVA for the following factors: beaker size, equipment (App A and B) and condition (with/without disk). Two tablet products were not sensitive to any changes in the test conditions or equipment configurations. One product was only partially sensitive to the test conditions. The other products showed impact on the disintegration time for all test conditions. The results revealed that these tablet products might pass or fail current USP disintegration requirements depending on the equipment configuration. Similar results were obtained for the two investigated capsule formulations. One product might fail current USP disintegration requirements if the large beaker was used, but might pass the disintegration requirements when the small beaker was used. Hydroxy propyl methyl cellulose capsules were mostly influenced if sodium instead of a potassium buffer was used as the immersion medium. The results demonstrate that the current harmonized ICH specifications for the disintegration test are insufficient to make the disintegration test into reliable test for dietary supplements.
Resumo:
Choline citrate (CC) and acetylmethionine (AM) are lipotropic drugs used in several pharmaceutical formulations. The objective of this research was to develop and validate a high performance liquid chromatographic (HPLC) method for simultaneous determination of CC and AM in injectable solutions, aiming its application in routine analysis for quality control of these pharmaceutical formulations. The method was validated using a Shim-Pack (R) C18 (250 x 4.6 mm, 5 mu m) column. The mobile phase was constituted of 25 mM potassium phosphate buffer solution, pH 5.7, adjusted with 10 % orthophosphoric acid, acetonitrile and methanol (88:10:2, v/v/v). The flow rate was 1.1 mL.min(-1) and the UV detection was made at 210 nm. The analyses were made at room temperature (25 +/- 1 degrees C). The method is precise, selective, accurate and robust, and was successfully applied for simultaneous quantitative determination of CC and AM in injectables.