272 resultados para Oxidative-stress
Resumo:
We evaluated the influence of iNOS-derived NO on the mechanics, inflammatory, and remodeling process in peripheral lung parenchyma of guinea pigs with chronic pulmonary allergic inflammation. Animals treated or not with 1400W were submitted to seven exposures of ovalbumin in increasing doses. Seventy-two hours after the 7th inhalation, lung strips were suspended in a Krebs organ bath, and tissue resistance and elastance measured at baseline and after ovalbumin challenge. The strips were submitted to histopathological measurements. The ovalbumin-exposed animals showed increased maximal responses of resistance and elastance (p < 0.05), eosinophils counting (p < 0.001), iNOS-positive cells (p < 0.001), collagen and elastic fiber deposition (p < 0.05), actin density (p < 0.05) and 8-iso-PGF2 alpha expression (p < 0.001) in alveolar septa compared to saline-exposed ones. Ovalbumin-exposed animals treated with 1400 W had a significant reduction in lung functional and histopathological findings (p < 0.05). We showed that iNOS-specific inhibition attenuates lung parenchyma constriction, inflammation, and remodeling, suggesting NO-participation in the modulation of the oxidative stress pathway. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this study, we evaluated the acute effects of central NAC administration on baroreflex in juvenile SHR and Wistar Kyoto (WKY) rats. Male SHR and WKY rats (8 10 weeks old) were implanted with a stainless steel guide cannula into the fourth cerebral ventricle (4th V). The femoral artery and vein were cannulated for mean arterial pressure (MAP) and heart rate (HR) measurement and drug infusion, respectively. After basal MAP and HR recordings, the baroreflex was tested with a pressor dose of phenylephrine (PHE, 8 mu g/kg, bolus) and a depressor dose of sodium nitroprusside (SNP, 50 mu g/kg, bolus). Baroreflex was evaluated before, 5, 15, 30 and 60 minutes after NAC injection into the 4th V. Vehicle treatment did not change baroreflex responses in WKY and SHR. Central NAC slightly but significantly increased basal HR at 15 minutes and significantly reduced PHE-induced increase in MAP 30 and 60 minutes after NAC injection (p < 0.05) in WKY rats. In relation to SHR, NAC decreased HR range 15 and 30 minutes after its administration. In conclusion, acute NAC into the 4th V does not improve baroreflex in juvenile SHR.
Resumo:
in humans, adverse pregnancy outcomes (low birth weight, prematurity, and intrauterine growth retardation) are associated with exposure to urban air pollution. Experimental data have also shown that such exposure elicits adverse reproductive outcomes. We hypothesized that the effects of urban air pollution on pregnancy outcomes could be related to changes in functional morphology of the placenta. To test this, future dams were exposed during pregestational and gestational periods to filtered or nonfiltered air in exposure chambers. Placentas were collected from near-term pregnancies and prepared for microscopical examination. Fields of view on vertical uniform random tissue slices were analyzed using stereological methods. Volumes of placental compartments were estimated, and the labyrinth was analyzed further in terms of its maternal vascular spaces, fetal capillaries, trophoblast, and exchange surface areas. From these primary data, secondary quantities were derived: vessel calibers (expressed as diameters), trophoblast thickness (arithmetic mean), and total and mass-specific morphometric diffusive conductances for oxygen of the intervascular barrier. Two-way analysis of variance showed that both periods of exposure led to significantly smaller fetal weights. Pregestational exposure to nonfiltered air led to significant increases in fetal capillary surface area and in total and mass-specific conductances. However, the calibers of maternal blood spaces were reduced. Gestational exposure to nonfiltered air was associated with reduced volumes, calibers, and surface areas of maternal blood spaces and with greater fetal capillary surfaces and diffusive conductances. The findings indicate that urban air pollution affects placental functional morphology. Fetal weights are compromised despite attempts to improve diffusive transport across the placenta.
Resumo:
Objective: To evaluate the role oral administration of S-nitroso-N-acetylcysteine (SNAC), a NO donor drug, in the prevention and reversion of NASH in two different animal models. Methods: NASH was induced in male ob/ob mice by methionine-choline deficient (MCD) and high-fat (H) diets. Two animal groups received or not SNAC orally for four weeks since the beginning of the treatment. Two other groups were submitted to MCD and H diets for 60 days receiving SNAC only from the 31(st) to the 60(th) day. Results: SNAC administration inhibited the development of NASH in all groups, leading to a marked decrease in macro and microvacuolar steatosis and in hepatic lipid peroxidation in the MCD group. SNAC treatment reversed the development of NASH in animals treated for 60 days with MCD or H diets, which received SNAC only from the 31(st) to the 60(th) day. Conclusions: Oral administration of SNAC markedly inhibited and reversed NASH induced by MCD and H diets in ob/ob mice.
Resumo:
Several epidemiological studies have linked particulate matter exposure to numerous adverse health effects on the respiratory, cardiovascular, and reproductive systems (Braga et al., 1999; Zanobetti et al., 2000; Anderson et al., 2001; Farhat et al., 2005). More recently, ambient levels of black carbon were associated to impaired cognitive function in children (Suglia et al., 2008), suggesting that the central nervous system (CNS) may be a target of air pollutants. The present study was conducted to (a) determine whether chronic residual oil fly ash (ROFA) exposure promotes behavioral changes and lipid peroxidation in rat brain areas, and (b) determine whether N-acetylcysteine (NAC), a general antioxidant, prevents these effects. Forty-five-day-old male Wistar rats were exposed or not to ROFA by intranasal instillation and were treated or not with NAC (150 mg/kg) ip for 30 days. One day later, rats were submitted to the open field test to evaluate the motor/exploratory activities and emotionality followed by decapitation. Striatum and cerebellum were dissected to determine lipid peroxidation by the accumulation of thiobarbituric acid-reactive substances (TBARS). ROFA instillation induced an increase in lipid peroxidation level in striatum (p = .033) and cerebellum (p = .030), as compared with the control group. NAC treatment blocked these changes. ROFA promoted a decrease in the frequency of peripheral walking (p = .006) and a decrease in exploration (p = .001), which were not blocked by N-acetylcysteine. The present study provides evidence that toxic particles, administered by the respiratory route, induce oxidative stress in structures of the central nervous system, as well as behavioral alterations. The administration of NAC reduces lipid peroxidation at the striatum and cerebellum levels, but does not influence behavioral disturbances.
Resumo:
Airway epithelium plays an important role in the asthma physiopathology. Aerobic exercise decreases Th2 response in murine models of allergic asthma, but its effects on the structure and activation of airway epithelium in asthma are unknown. BALB/c mice were divided into control, aerobic exercise, ovalbumin-sensitized and ovalbumin-sensitized plus aerobic exercise groups. Ovalbumin sensitization occurred on days 0, 14, 28, 42, and aerosol challenge from day 21 to day 50. Aerobic exercise started on day 22 and ended on day 50. Total cells and eosinophils were reduced in ovalbumin-sensitized group submitted to aerobic exercise. Aerobic exercise also reduced the oxidative and nitrosative stress and the epithelial expression of Th2 cytokines, chemokines, adhesion molecules, growth factors and NF-kB and P2X7 receptor. Additionally, aerobic exercise increased the epithelial expression of IL-10 in non-sensitized and sensitized animals. These findings contribute to the understanding of the beneficial effects of aerobic exercise for chronic allergic airway inflammation, suggesting an immune-regulatory role of exercise on airway epithelium. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this study, we tested the influence of ambient air pollution on different phases of development of adult mice. With respect to adult weight, the animals that had spent their in utero period exposed to pollution showed less weight gain over their lifetime, as well as lower activity levels of the antioxidant enzymes catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx). Our study suggests that contact with atmospheric pollutants during the foetal period produces important changes on enzymatic erythrocyte antioxidant defense and weight in adult mice. (C) 2011 Elsevier B.V. All rights reserved.
Can LASSBio 596 and dexamethasone treat acute lung and liver inflammation induced by microcystin-LR?
Resumo:
The treatment of microcystin-LR (MCYST-LR)-induced lung inflammation has never been reported Hence. LASSBio 596, an anti-Inflammatory drug candidate, designed as symbiotic agent that modulates TNF-alpha levels and inhibits phosphodiesterase types 4 and 5, or dexamethasone were tested in this condition Swiss mice were intraperitoneally (i p) injected with 60 mu l of saline (CTRL) or a sub-lethal dose of MCYST-LR (40 mu g/kg). 6 h later they were treated (i p.) with saline (TOX), LASSB10 596 (10 mg/kg, L596), or dexamethasone (1 mg/kg, 0.1 mL, DEXA). 8 h after MCYST-LR injection, pulmonary mechanics were determined, and lungs and livers prepared for histopathology, biochemical analysis and quantification of MCYST-LR. TOX showed significantly higher lung impedance than CTRL and L596, which were similar. DEXA could only partially block the mechanical alterations. In both TOX and DEXA alveolar collapse and inflammatory cell influx were higher than in CTRL and L596, being LASSB10 596 more effective than dexamethasone. TOX showed oxidative stress that was not present in an and L596, while DEXA was partially efficient. MCYST-LR was detected in the livers of all mice receiving MCYST-LR and no recovery was apparent In conclusion, LASSBio 596 was more efficient than dexamethasone in reducing the pulmonary functional impairment induced by MCYST-LR. (C) 2010 Elsevier Ltd. All rights reserved
Resumo:
P>1. Baroreceptors regulate moment-to-moment blood pressure (BP) variations, but their long-term effect on the cardiovascular system remains unclear. Baroreceptor deficit accompanying hypertension contributes to increased BP variability (BPV) and sympathetic activity, whereas exercise training has been associated with an improvement in these baroreflex-mediated changes. The aim of the present study was to evaluate the autonomic, haemodynamic and cardiac morphofunctional effects of long-term sinoaortic baroreceptor denervation (SAD) in trained and sedentary spontaneously hypertensive rats (SHR). 2. Rats were subjected to SAD or sham surgery and were then further divided into sedentary and trained groups. Exercise training was performed on a treadmill (five times per week, 50-70% maximal running speed). All groups were studied after 10 weeks. 3. Sinoaortic baroreceptor denervation in SHR had no effect on basal heart rate (HR) or BP, but did augment BPV, impairing the cardiac function associated with increased cardiac hypertrophy and collagen deposition. Exercise training reduced BP and HR, re-established baroreflex sensitivity and improved both HR variability and BPV. However, SAD in trained SHR blunted all these improvements. Moreover, the systolic and diastolic hypertensive dysfunction, reduced left ventricular chamber diameter and increased cardiac collagen deposition seen in SHR were improved after the training protocol. These benefits were attenuated in trained SAD SHR. 4. In conclusion, the present study has demonstrated that the arterial baroreflex mediates cardiac disturbances associated with hypertension and is crucial for the beneficial cardiovascular morphofunctional and autonomic adaptations induced by chronic exercise in hypertension.
Resumo:
Epidemiological studies have demonstrated the adverse effects of particulate matter (PM) inhalation on the respiratory and cardiovascular systems. It has been reported that air pollution may affect the central nervous system and decrease cognitive function. In rats, residual oil fly ash (ROFA) instillation causes decreased motor activity and increased lipid peroxidation in the striatum and the cerebellum. Our objective was to determine whether chronic instillation of particles induces changes in learning and memory in rats and whether oxidants in the hippocampus may contribute to these adverse effects. Forty-five-day-old male Wistar rats were exposed to ROFA by intranasal instillation and were treated with N-acetylcysteine (NAC) at 150 mg/kg i.p. for 30 days. Control groups were exposed to ROFA, NAC, or neither. On days 1, 8, and 30 of the protocol, rats were submitted to the open field test to evaluate habituation. After the last open field session, the rats were killed by decapitation. The hippocampus was used to determine lipid peroxidation (LP) by the thiobarbituric acid-reactive substances test. ROFA instillation induced an increase in LP in the hippocampus compared to all treatment groups (p = .012). NAC treatment blocked these changes. All of the treatment groups presented a decrease in the frequency of peripheral walking (p = .001), rearing (p = .001), and exploration (p = .001) over time. Our study demonstrates that exposure to particles for 30 days and/or NAC treatment do not modify habituation to an open field, a simple form of learning and memory in rats, and that oxidative damage induced by ROFA does not modulate these processes.
Resumo:
Exposure to air pollution can elicit cardiovascular health effects. Children and unborn fetuses appear to be particularly vulnerable. However, the mechanisms involved in cardiovascular damage are poorly understood. It has been suggested that the oxidative stress generated by air pollution exposure triggers tissue injury. To investigate whether prenatal exposure can enhance oxidative stress in myocardium of adult animals, mice were placed in a clean chamber (CC, filtered urban air) and in a polluted chamber (PC, Sao Paulo city) during the gestational period and/or for 3 mo after birth, according to 4 protocols: control group-prenatal and postnatal life in CC; prenatal group-prenatal in PC and postnatal life in CC; postnatal group-prenatal in CC and postnatal life in PC; and pre-post group-prenatal and postnatal life in PC. As an indicator of oxidative stress, levels of lipid peroxidation in hearts were measured by malondialdehyde (MDA) quantification and by quantification of the myocardial immunoreactivity for 15-F2t-isoprostane. Ultrastructural studies were performed to detect cellular alterations related to oxidative stress. Concentration of MDA was significantly increased in postnatal (2.45 +/- 0.84 nmol/mg) and pre-post groups (3.84 +/- 1.39 nmol/mg) compared to the control group (0.31 +/- 0.10 nmol/mg) (p < .01). MDA values in the pre-post group were significantly increased compared to the prenatal group (0.71 +/- 0.15 nmol/mg) (p = .017). Myocardial isoprostane area fraction in the pre-post group was increased compared to other groups (p <= .01). Results show that ambient levels of air pollution elicit cardiac oxidative stress in adult mice, and that gestational exposure may enhance this effect.
Resumo:
Intense lifestyle modifications can change the high-density lipoprotein (HDL) cholesterol concentration. The aim of the present study was to analyze the early effects of short-term exercise training, without any specific diet, on the HDL cholesterol plasma levels and HDL functional characteristics in patients with the metabolic syndrome (MS). We studied 30 sedentary subjects, 20 with and 10 without the MS. The patients with the MS underwent moderate intensity exercise training for 3 months on bicycle ergometers. Blood was sampled before and after training for biochemical analysis, paraoxonase-1 activity, and HDL subfraction composition and antioxidative capacity. Lipid transfer to HDL was assayed in vitro using a labeled nanoemulsion as the lipid donor. At baseline, the MS group had greater triglyceride levels and a lower HDL cholesterol concentration and lower paraoxonase-1 activity than did the controls. Training decreased the plasma triglycerides but did not change the low-density lipoprotein or HDL cholesterol levels. Nonetheless, exercise training increased the HDL subfractions` antioxidative capacity and paraoxonase-1 activity. After training, the MS group had compositional changes in the smallest HDL subfractions associated with increased free cholesterol and cholesterol ester transfers to HDL, reaching normal values. In conclusion, the present investigation has added relevant information about the dissociation between the quantitative and qualitative aspects of HDL after short-term exercise training without any specific diet in those with the MS, highlighting the importance of evaluating the functional aspects of the lipoproteins, in addition to their plasma levels. (C) 2011 Elsevier Inc. All rights reserved. (Am J Cardiol 2011;107:1168-1172)
Resumo:
Study Objectives: Sleep apnea is common in patients with congestive heart failure, and may contribute to the progression of underlying heart diseae. Cardiovascular and metabolic complications of sleep apnea have been attributed to intermittent hypoxia. Elevated free fatty acids (FFA) are also associated with the progression of metabolic, vascular, and cardiac dysfunction. The objective of this study was to determine the effect of intermittent hypoxia on FFA levels during sleep in patients with heart failure. Design and interventions: During sleep, frequent blood samples were examined for FFA in patients with stable heart (ejection fraction < 40%). In patients with severe sleep apnea (apnea-hypopnea index = 15.4 +/- 3.7 events/h; average low SpO(2) = 93.6%). In patients with severe sleep apnea, supplemental oxygen at 2-4 liters/min was administered on a subsequent night to eliminate hypoxemia. Measurements and Results: Prior to sleep onset, controls and patients with severe apnea exhibited a similar FFA level. After sleep onset, patients with severe sleep apnea exhibited a marked and rapid increase in FFA relative to control subjects. This increase persisted throughout NREM and REM sleep exceeding serum FFA levels in control subjects by 0.134 mmol/L (P = 0.0038) Supplemental oxygen normalized the FFA profile without affecting sleep architecture or respiratory arousal frequency. Conclusion: In patients with heart failure, severe sleep apnea causes surges in nocturnal FFA that may contribute to the accelerated progression of underlying heart disease. Supplemental oxygen prevents that FFA elevation.
Resumo:
Obstructive sleep apnea (OSA) is recurrent obstruction of the upper airway leading to sleep fragmentation and intermittent hypoxia (IH) during sleep. There is growing evidence from animal models of OSA that IH is independently associated with metabolic dysfunction, including dyslipidemia and insulin resistance. The precise mechanisms by which IH induces metabolic disturbances are not fully understood. Over the last decade, several groups of investigators developed a rodent model of IH, which emulates the oxyhemoglobin profile in human USA. In the mouse model, IH induces dyslipidemia, insulin resistance and pancreatic endocrine dysfunction, similar to those observed in human USA. Recent reports provided new insights in possible mechanisms by which IH affects lipid and glucose metabolism. IH may induce dyslipidemia by up-regulating lipid biosynthesis in the liver, increasing adipose tissue lipolysis with subsequent free fatty acid flux to the liver, and inhibiting lipoprotein clearance. IH may affect glucose metabolism by inducing sympathetic activation, increasing systemic inflammation, increasing counter-regulatory hormones and fatty acids, and causing direct pancreatic beta-cell injury. IH models of USA have improved our understanding of the metabolic impact of USA, but further studies are needed before we can translate recent basic research findings to clinical practice. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Obstructive sleep apnea (OSA) is independently associated with death from cardiovascular diseases, including myocardial infarction and stroke. Myocardial infarction and stroke are complications of atherosclerosis; therefore, over the last decade investigators have tried to unravel relationships between OSA and atherosclerosis. OSA may accelerate atherosclerosis by exacerbating key atherogenic risk factors. For instance, OSA is a recognized secondary cause of hypertension and may contribute to insulin resistance, diabetes, and dyslipidemia. In addition, clinical data and experimental evidence in animal models suggest that OSA can have direct proatherogenic effects inducing systemic inflammation, oxidative stress, vascular smooth cell activation, increased adhesion molecule expression, monocyte/lymphocyte activation, increased lipid loading in macrophages, lipid peroxidation, and endothelial dysfunction. Several cross-sectional studies have shown consistently that OSA is independently associated with surrogate markers of premature atherosclerosis, most of them in the carotid bed. Moreover, OSA treatment with continuous positive airway pressure may attenuate carotid atherosclerosis, as has been shown in a randomized clinical trial. This review provides an update on the role of OSA in atherogenesis and highlights future perspectives in this important research area. CHEST 2011; 140(2):534-542