201 resultados para Laser transitions
Resumo:
This study aimed to investigate the effect of 830 nm low-level laser therapy (LLLT) on skeletal muscle fatigue. Ten healthy male professional volleyball players entered a crossover randomized double-blinded placebo-controlled trial. Active LLLT (830 nm wavelength, 100 mW output, spot size 0.0028 cm(2), 200 s total irradiation time) or an identical placebo LLLT was delivered to four points on the biceps humeri muscle immediately before exercises. All subjects performed voluntary biceps humeri contractions with a load of 75% of the maximum voluntary contraction (MVC) force until exhaustion. After active LLLT the mean number of repetitions was significantly higher than after placebo irradiation [mean difference 4.5, standard deviation (SD) +/- 6.0, P = 0.042], the blood lactate levels increased after exercises, but there was no significant difference between the treatments. We concluded that 830 nm LLLT can delay the onset of skeletal muscle fatigue in high-intensity exercises, in spite of increased blood lactate levels.
Resumo:
Background: Eccentric exercises (EEs) are recommended for the treatment of Achilles tendinopathy, but the clinical effect from EE has a slow onset. Hypothesis: The addition of low-level laser therapy (LLLT) to EE may cause more rapid clinical improvement. Study Design: Randomized controlled trial; Level of evidence, 1. Methods: A total of 52 recreational athletes with chronic Achilles tendinopathy symptoms were randomized to groups receiving either EE + LLLT or EE + placebo LLLT over 8 weeks in a blinded manner. Low-level laser therapy (lambda = 820 nm) was administered in 12 sessions by irradiating 6 points along the Achilles tendon with a power density of 60 mW/cm(2) and a total dose of 5.4 J per session. Results: The results of the intention-to-treat analysis for the primary outcome, pain intensity during physical activity on the 100-mm visual analog scale, were significantly lower in the LLLT group than in the placebo LLLT group, with 53.6 mm versus 71.5 mm (P = .0003) at 4 weeks, 37.3 mm versus 62.8 mm (P = .0002) at 8 weeks, and 33.0 mm versus 53.0 mm (P =.007) at 12 weeks after randomization. Secondary outcomes of morning stiffness, active dorsiflexion, palpation tenderness, and crepitation showed the same pattern in favor of the LLLT group. Conclusion: Low-level laser therapy, with the parameters used in this study, accelerates clinical recovery from chronic Achilles tendinopathy when added to an EE regimen. For the LLLT group, the results at 4 weeks were similar to the placebo LLLT group results after 12 weeks.
Resumo:
The Nd:YAG laser efficacy associated with conventional treatment for bacterial reduction has been investigated throughout literature. The purpose of this study was to evaluate the bacterial reduction after Nd:YAG laser irradiation associated with scaling and root planning in class II furcation defects in patients with chronic periodontitis. Thirty-four furcation lesions were selected from 17 subjects. The control group received conventional treatment, and the experimental group received the same treatment followed by Nd:YAG laser irradiation (100 mJ/pulse; 15 Hz; 1.5 W, 60 s, 141.5 J/cm(2)). Both treatments resulted in improvements of most clinical parameters. A significant reduction of colony forming unit (CFU) of total bacteria number was observed in both groups. The highest reduction was noted in the experimental group immediately after the treatment. The number of dark pigmented bacteria and the percentage of patients with Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans reduced immediately after the treatment and returned to values close to the initial ones 6 weeks after the baseline for both groups. The Nd:YAG laser associated with conventional treatment promoted significant bacterial reduction in class II furcation immediately after irradiation, although this reduction was not observed 6 weeks after the baseline.
Resumo:
Objective. The objective of this study was to evaluate the disinfection degree of dentine caused by the use of diode laser after biomechanical procedures. Study design. Thirty teeth were sectioned and roots were autoclaved and incubated for 4 weeks with a suspension of Enterococcus faecalis. The specimens were randomly divided into 3 groups (n = 10): G1, instrumented with rotary files, irrigated with 0.5% sodium hypochlorite and 17% EDTA-T, and then irradiated by 830-nm diode laser at 3 W; G2, the same procedures as G1 but without laser irradiation; and G3, irrigation with saline solution (control). Dentin samples of each third were collected with carbide burs and aliquots were sowed to count viable cells. Results. The disinfection degree achieved was 100% in G1 and 98.39% in G2, when compared to the control group (G3). Conclusion. Diode laser irradiation provided increased disinfection of the deep radicular dentin in the parameters and samples tested.
Resumo:
The high intensity diode laser has been studied in periodontics for the reduction of subgingival bacteria in non-surgical treatment. Our study evaluated the bacterial effect as well as changes in periodontal clinical parameters promoted by root scaling and planing associated with this wavelength. Twenty-seven patients randomly assigned in two groups underwent root scaling and planing on the tested sites, and only the experimental group received the diode laser irradiation. Among the clinical parameters studied, the clinical probing depth (CPD) and the clinical attachment level (CAL) resulted in significant enhancement in the control group when compared with the experimental group (P = 0.014 and P = 0.039, respectively). The results were similar for both groups regarding the plaque index (PI) and bleeding on probing (BP). No significant difference in the microbiological parameters was observed between the control and experimental groups. It was possible to conclude that the high power diode laser adjunct to the non-surgical periodontal treatment did not promote additional effects to the conventional periodontal treatment.
Resumo:
Background and Objective. Low level laser therapy (LLLT) is a known anti-inflammatory therapy. Herein we studied the effect of LLLT on lung permeability and the IL-1 beta level in LPS-induced pulmonary inflammation. Study Design/Methodology. Rats were divided into 12 groups (n = 7 for each group). Lung permeability was measured by quantifying extravasated albumin concentration in lung homogenate, inflammatory cells influx was determined by myeloperoxidase activity, IL-1P in BAL was determined by ELISA and IL-1P mRNA expression in trachea was evaluated by RT-PCR. The rats were irradiated on the skin over the upper bronchus at the site of tracheotomy after LPS. Results. LLLT attenuated lung permeability. In addition, there was reduced neutrophil influx, myeloperoxidase activity and both IL-1 beta in BAL and IL-1 beta mRNA expression in trachea obtained from animals subjected to LPS-induced inflammation. Conclusion. LLLT reduced the lung permeability by a mechanism in which the IL-1 beta seems to have an important role.