295 resultados para ISOLATED RAT ADIPOCYTES
Resumo:
Amphibian skin secretions are considered a rich source of biologically active compounds and are known to be rich in peptides, bufadienolides and alkaloids. Bufadienolides are cardioactive steroids from animals and plants that have also been reported to possess antimicrobial activities. Leishmaniasis and American Trypanosomiasis are parasitic diseases found in tropical and subtropical regions. The efforts toward the discovery of new treatments for these diseases have been largely neglected, despite the fact that the only available treatments are highly toxic drugs. In this work, we have isolated, through bioguided assays, the major antileishmanial compounds of the toad Rhinella jimi parotoid macrogland secretion. Mass spectrometry and (1)H and (13)C NMR spectroscopic analyses were able to demonstrate that the active molecules are telocinobufagin and hellebrigenin. Both steroids demonstrated activity against Leishmania (L.) chagasi promastigotes, but only hellebrigenin was active against Trypanosoma cruzi trypomastigotes. These steroids were active against the intracellular amastigotes of Leishmania, with no activation of nitric oxide production by macrophages. Neither cytotoxicity against mouse macrophages nor hemolytic activities were observed. The ultrastructural studies with promastigotes revealed the induction of mitochondrial damage and plasma membrane disturbances by telocinobufagin, resulting in cellular death. This novel biological effect of R. jimi steroids could be used as a template for the design of new therapeutics against Leishmaniasis and American Trypanosomiasis. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The emergence of less common fungal pathogens has been increasingly reported in the last decade. We describe 25 cases of Rhodotorula spp. isolated from blood cultures at a large Brazilian tertiary teaching hospital from 1996-2004. We also investigated the in vitro activity of four antifungal drugs, using a standardized method. The median age of patients was 43 years. The majority of patients (88%) had a central venous catheter (CVC) and 10 (40%) were recipients of a bone marrow transplant. The episode was classified as a bloodstream infection (BSI) in 80% of the patients. Amphotericin B deoxycholate was the most common antifungal used and CVC was removed in 89.5% of the patients. Death occurred in four patients (17.4%), all classified as BSI. All strains were identified as R. mucilaginosa by conventional methods. Misidentification of the species was observed in 20% and 5% of the strains with the Vitek Yeast Biochemical Card and API 20C AUX systems, respectively. Amphotericin B demonstrated good in vitro activity (MIC(50/90), 0.5 mu g/ml) and the MICs for fluconazole were high for all strains (MIC(50/90), 64 mu g/ml).
Resumo:
Inhibition of carotid body (CB) function is the main mechanism involved in the attenuation of respiratory drive observed during hyperoxia However, only a few studies at 5 0 atmospheres absolutes (ATA) have analyzed carotid body structure or function in hyperbaric oxygenation (HBO(2)) situations We hypothesized that rats will present CB structural alterations when exposed to different lower hyperbaric oxygen doses enough to alter their chemosensory response to hypoxia Methods - Twenty-one adult male Wistar rats, divided into three groups, were maintained in room air or exposed to O(2) at 2 4 or 3 0 ATA for six hours Histological, ultrastructural and immunohistochemical analyses for neuronal nitric oxide synthase (nNOS) and F2-isoprostane were performed in the excised CBs Results - Histological analyses revealed signs of intracellular edema in animals exposed to both conditions, but this was more marked in the 3 0 ATA group, which showed ultrastructural alterations at the mitochondrial level There was a significant increase in the volume density of intraglomic-congested capillaries in the 3 0 ATA group associated with an arteriolar vasoconstriction In the 2 4 ATA group, there was a relative increase of glomic light cells and a decrease of glomic progenitor cells Additionally, there was a stronger immunoreactivity for F2-isoprostane in the 3 0 ATA O(2)-exposed carotid bodies The glomic cells stained positive for nNOS, but no difference was observed between the groups Our results show that high 02 exposures may induce structural alterations in glomic cells with signs of lipid peroxidation We further suggest that deviation of blood flow toward intraglomic capillaries occurs in hyperbaric hyperoxia
Resumo:
Introduction. The hippocampal formation is a specific structure in the brain where neurogenesis occurs throughout adulthood and in which the neuronal cell loss causes various demential states. The main goal of this study was to verify whether fetal neural progenitor cells (NPCs) from transgenic rats expressing green fluorescent protein (GFP) retain the ability to differentiate into neuronal cells and to integrate into the hippocampal circuitry after transplantation. Methods. NPCs were isolated from E14 (gestational age: 14 days postconception) transgenic-Lewis and wild-type Sprague-Dawley rat embryos. Wild-type and transgenic cells were expanded and induced to differentiate into a neuronal lineage in vitro. Immunocytochemical and electrophysiological analysis were performed in both groups. GFP-expressing cells were implanted into the hippocampus and recorded electrophysiologically 3 months thereafter. Immunohistochemical analysis confirmed neuronal differentiation, and the yield of neuronal cells was determined stereologically. Results. NPCs derived from wild-type and transgenic animals are similar regarding their ability to generate neuronal cells in vitro. Neuronal maturity was confirmed by immunocytochemistry and electrophysiology, with demonstration of voltage-gated ionic currents, firing activity, and spontaneous synaptic currents. GFP-NPCs were also able to differentiate into mature neurons after implantation into the hippocampus, where they formed functional synaptic contacts. Conclusions. GFP-transgenic cells represent an important tool in transplantation studies. Herein, we demonstrate their ability to generate functional neurons both in vitro and in vivo conditions. Neurons derived from fetal NPCs were able to integrate into the normal hippocampal circuitry. The high yield of mature neurons generated render these cells important candidates for restorative approaches based on cell therapy.
Resumo:
Obstetric complications play a role in the pathophysiology of schizophrenia. However, the biological consequences during neurodevelopment until adulthood are unknown. Microarrays have been used for expression profiling in four brain regions of a rat model of neonatal hypoxia as a common factor of obstetric complications. Animals were repeatedly exposed to chronic hypoxia from postnatal (PD) day 4 through day 8 and killed at the age of 150 days. Additional groups of rats were treated with clozapine from PD 120-150. Self-spotted chips containing 340 cDNAs related to the glutamate system (""glutamate chips"") were used. The data show differential (up and down) regulations of numerous genes in frontal (FR), temporal (TE) and parietal cortex (PAR), and in caudate putamen (CPU), but evidently many more genes are upregulated in frontal and temporal cortex, whereas in parietal cortex the majority of genes are downregulated. Because of their primary presynaptic occurrence, five differentially expressed genes (CPX1, NPY, NRXN1, SNAP-25, and STX1A) have been selected for comparisons with clozapine-treated animals by qRT-PCR. Complexin 1 is upregulated in FR and TE cortex but unchanged in PAR by hypoxic treatment. Clozapine downregulates it in FR but upregulates it in PAR cortex. Similarly, syntaxin 1A was upregulated in FR, but downregulated in TE and unchanged in PAR cortex, whereas clozapine downregulated it in FR but upregulated it in PAR cortex. Hence, hypoxia alters gene expression regionally specific, which is in agreement with reports on differentially expressed presynaptic genes in schizophrenia. Chronic clozapine treatment may contribute to normalize synaptic connectivity.
Resumo:
The microtubule-associated protein Tau promotes the assembly and stability of microtubules in neuronal cells. Six Tau isoforms are expressed in adult human brain. All six isoforms become abnormally hyperphosphorylated and form neurofibrillary tangles in Alzheimer disease (AD) brains. In AD, reduced activity of phospholipase A(2) (PLA(2)), specifically of calcium-dependent cytosolic PLA(2) (cPLA(2)) and calcium-independent intracellular PLA(2) (iPLA(2)), was reported in the cerebral cortex and hippocampus, which positively correlated with the density of neurofibrillary tangles. We previously demonstrated that treatment of cultured neurons with a dual cPLA(2) and iPLA(2) inhibitor, methyl arachidonyl fluorophosphonate (MAFP), decreased total Tau levels and increased Tau phosphorylation at Ser(214) site. The aim of this study was to conduct a preliminary investigation into the effects of in vivo infusion of MAFP into rat brain on PLA(2) activity and total Tau levels in the postmortem frontal cortex and dorsal hippocampus. PLA(2) activity was measured by radioenzymatic assay and Tau levels were determined by Western blotting using the anti-Tau 6 isoforms antibody. MAFP significantly inhibited PLA(2) activity in the frontal cortex and hippocampus. The reactivity to the antibody revealed three Tau protein bands with apparent molecular weight of close to 40, 43 and 46 kDa in both brain areas. MAFP decreased the 46 kDa band intensity in the frontal cortex, and the 43 and 46 kDa band intensities in the hippocampus. The results indicate that in vivo PLA(2) inhibition in rat brain decreases the levels of total (nonphosphorylated plus phosphorylated) Tau protein and corroborate our previous in vitro findings.
Resumo:
Bone disease is a common disorder of bone remodeling and mineral metabolism, which affects patients with chronic kidney disease. Minor changes in the serum level of a given mineral can trigger compensatory mechanisms, making it difficult to evaluate the role of mineral disturbances in isolation. The objective of this study was to determine the isolated effects that phosphate and parathyroid hormone (PTH) have on bone tissue in rats. Male Wistar rats were subjected to parathyroidectomy and 5/6 nephrectomy or were sham-operated. Rats were fed diets in which the phosphate content was low, normal, or high. Some rats received infusion of PTH at a physiological rate, some received infusion of PTH at a supraphysiological rate, and some received infusion of vehicle only. All nephrectomized rats developed moderate renal failure. High phosphate intake decreased bone volume, and this effect was more pronounced in animals with dietary phosphate overload that received PTH infusion at a physiological rate. Phosphate overload induced hyperphosphatemia, hypocalcemia, and changes in bone microarchitecture. PTH at a supraphysiological rate minimized the phosphate-induced osteopenia. These data indicate that the management of uremia requires proper control of dietary phosphate, together with PTH adjustment, in order to ensure adequate bone remodeling.
Resumo:
Background. Subsequent ischaemic episodes may induce renal resistance. P21 is a cell cycle inhibitor that may be induced by oxygen-free radicals and may have a protective effect in ischaemic acute kidney injury (AKI). This study aimed at evaluating the role of oxidative stress and p21 on tubular resistance in a model of acquired resistance after renal ischaemia and in isolated renal tubules. Methods. Wistar rats were divided into: Group 1-sham; Group 2-sham operated and after 2 days submitted to 45-min ischaemia; and Group 3-45-min ischaemia followed after 2 days by a second 45-min ischaemia. Plasma urea was evaluated on Days 0, 2 and 4. Serum creatinine, creatinine clearance and oxidants (thiobarbituric acid-reactive substances) were determined 48 h after the second procedure (Day 4). Histology, immunohistochemistry for lymphocytes (CD3), macrophages (ED1), proliferation (PCNA) and apoptosis (TUNEL) were also evaluated. Rat proximal tubules (PTs) were isolated by collagenase digestion and Percoll gradient from control rats and rats previously subjected to 35 min of ischaemia. PTs were submitted to 15-min hypoxia followed by 45-min reoxygenation. Cell injury was assessed by lactate dehydrogenase release and hydroperoxide production (xylenol orange). Results. Ischaemia induced AKI in Group 2 and 3 rats. Subsequent ischaemia did not aggravate renal injury, demonstrating renal resistance (Group 3). Renal function recovery was similar in Group 2 and 3. Plasma and urine oxidants were similar among in Group 2 and 3. Histology disclosed acute tubular necrosis in Group 2 and 3. Lymphocyte infiltrates were similar among all groups whereas macrophages infiltrate was greater in Group 3. Cell proliferation was greater in Group 2 compared with Group 3. Apoptosis was similar in groups 2 and 3. The p21 expression was increased only in Group 3 whereas it was similar in groups 1 and 2. PTs from the ischaemia group were sensitive to hypoxia but resistant to reoxygenation injury which was followed by lower hydroperoxide production compared to control PT. Conclusion. Renal resistance induced by ischaemia was associated with cell mechanism mediators involving oxidative stress and increased p21 expression.
Resumo:
Tetralogy of Fallot (TOF), the most common severe congenital heart malformation, occurs sporadically, without other anomaly, and from unknown cause in 70% of cases. Through a genome-wide survey of 114 subjects with TOF and their unaffected parents, we identified 11 de novo copy number variants (CNVs) that were absent or extremely rare (<0.1%) in 2,265 controls. We then examined a second, independent TOF cohort (n = 398) for additional CNVs at these loci. We identified CNVs at chromosome 1q21.1 in 1% (5/512, P = 0.0002, OR = 22.3) of nonsyndromic sporadic TOF cases. We also identified recurrent CNVs at 3p25.1, 7p21.3 and 22q11.2. CNVs in a single subject with TOF occurred at six loci, two that encode known (NOTCH1, JAG1) disease-associated genes. Our findings predict that at least 10% (4.5-15.5%, 95% confidence interval) of sporadic nonsyndromic TOF cases result from de novo CNVs and suggest that mutations within these loci might be etiologic in other cases of TOF.
Resumo:
STUDY DESIGN: Controlled laboratory study. OBJECTIVE: To evaluate the effect of low-intensity therapeutic ultrasound on the murine calcaneus tendon healing process. BACKGROUND: Therapeutic ultrasound promotes formation and maturation of scar tissue. METHODS: Calcaneus tendon tenotomy and tenorrhaphy was performed on 28 Wistar rats. After the procedure, the animals were randomly divided into 2 groups. The animals in the experimental group received a 5-minute ultrasound application, once a day, at a frequency of 1 MHz, a spatial average temporal average intensity of 0.1 W/cm(2), and a spatial average intensity of 0.52 W/cm(2) at a 16-Hz frequency pulse mode (duty cycle, 20%). Data for the injured side were normalized in relation to the data from the contralateral healthy calcaneus tendon (relative values). The animals in the control group received sham treatment. After a 28-day treatment period, the animals were sacrificed and their tendons surgically removed and subjected to mechanical stress testing. The parameters analyzed were cross-sectional area (mm(2)), ultimate load (N), tensile strength (MPa), and energy absorption (mJ). RESULTS: A significant difference between groups was found for the relative values of ultimate load and tensile strength. The mean +/- SD ultimate load of the control group was -3.5% +/- 32.2% compared to 33.3% +/- 26.8% for the experimental group (P = .005). The mean tensile strength of the control group was -47.7% +/- 19.5% compared to -28.1% +/- 24.1% for the experimental group (P = .019). No significant difference was found in cross-sectional area and energy absorption. CONCLUSION: Low-intensity pulsed ultrasound produced by a conventional therapeutic ultrasound unit can positively influence the calcaneus tendon healing process in rats. J Ort hop Sports Phys Ther 2011;41(7):526-531, Epub 2 February 2011. doi:10.2519/jospt.2011.3468
Resumo:
Neo-intima development and atherosclerosis limit long-term vein graft use for revascularization of ischaemic tissues. Using a rat model, which is technically less challenging than smaller rodents, we provide evidence that the temporal morphological, cellular, and key molecular events during vein arterialization resemble the human vein graft adaptation. Right jugular vein was surgically connected to carotid artery and observed up to 90 days. Morphometry demonstrated gradual thickening of the medial layer and important formation of neo-intima with deposition of smooth muscle cells (SMC) in the subendothelial layer from day 7 onwards. Transmission electron microscopy showed that SMCs switch from the contractile to synthetic phenotype on day 3 and new elastic lamellae formation occurs from day 7 onwards. Apoptosis markedly increased on day 1, while alpha-actin immunostaining for SMC almost disappeared by day 3. On day 7, cell proliferation reached the highest level and cellular density gradually increased until day 90. The relative magnitude of cellular changes was higher in the intima vs. the media layer (100 vs. 2 times respectively). Cyclin-dependent kinase inhibitors (CDKIs) p27(Kip1) and p16(INKA) remained unchanged, whereas p21(Cip1) was gradually downregulated, reaching the lowest levels by day 7 until day 90. Taken together, these data indicate for the first time that p21(Cip1) is the main CDKI protein modulated during the arterialization process the rat model of vein arterialization that may be useful to identify and validate new targets and interventions to improve the long-term patency of vein grafts.
Resumo:
We assessed a new experimental model of isolated right ventricular (RV) failure, achieved by means of intramyocardial injection of ethanol. RV dysfunction was induced in 13 mongrel dogs via multiple injections of 96% ethanol (total dose 1 mL/kg), all over the inlet and trabecular RV free walls. Hemodynamic and metabolic parameters were evaluated at baseline, after ethanol injection, and on the 14th postoperative day (POD). Echocardiographic parameters were evaluated at baseline, on the sixth POD, and on the 13th POD. The animals were then euthanized for histopathological analysis of the hearts. There was a 15.4% mortality rate. We noticed a decrease in pulmonary blood flow right after RV failure (P = 0.0018), as well as during reoperation on the 14th POD (P = 0.002). The induced RV dysfunction caused an increase in venous lactate levels immediately after ethanol injection and on the 14th POD (P < 0.0003). The echocardiogram revealed a decrease in the RV ejection fraction on the sixth and 13th PODs (P = 0.0001). There was an increased RV end-diastolic volume on the sixth (P = 0.0001) and 13th PODs (P = 0.0084). The right ventricle showed a 74% +/- 0.06% transmural infarction area, with necrotic lesions aged 14 days. Intramyocardial ethanol injection has allowed the creation of a reproducible and inexpensive model of RV failure. The hemodynamic, metabolic, and echocardiographic parameters assessed at different protocol times are compatible with severe RV failure. This model may be useful in understanding the pathophysiology of isolated right-sided heart failure, as well as in the assessment of ventricular assist devices.
Resumo:
To develop a rat model of erectile dysfunction (ED) after cavernous nerve injury. Given the great similarity between the anatomical structure of the cavernous nerve in rats and humans, 24 rats underwent dissections and the cavernous nerves were identified with the aid of an operating microscope. Then the rats were randomized into two groups: sham-operated controls and a bilateral cavernous nerve section group. At 3 months after surgery, the rats were evaluated for their response to an apomorphine challenge. The erectile response after an apomorphine challenge was normal in all the control rats, while there were no erections in the bilateral injured group. The rat major autonomic ganglion and its cavernous nerve can be identified with the aid of a microscope. Rats are inexpensive and easy to handle, thus a good animal for developing an ED model of cavernous nerve injury. In the present study, the rats with cavernous nerve injury lost erectile capacity in a reliable and reproducible fashion. Because of the great similarity between the cavernous nerve of rats and humans, one may consider this technique as a reliable experimental model for studying ED after radical prostatectomy.
Resumo:
In the disseminated form of histoplasmosis, isolation and further identification of Histoplasma capsulatum can be performed by several methods, namely, bone marrow aspiration, blood culture, and liver biopsy. Lymph node disease usually is diagnosed by excisional biopsy. Although fungal stains can identify this fungus, detection of specific antigens by immunohistochemistry shows a higher specificity and sensitivity. This approach can use the cell block method when the material is not sent to fungal cultures or fresh staining.