276 resultados para ETHANOL ELECTROOXIDATION
Resumo:
The simultaneous use of different sensors technologies is an efficient method to increase the performance of chemical sensors systems. Among the available technologies, mass and capacitance transducers are particularly interesting because they can take advantage also from non-conductive sensing layers, such as most of the more interesting molecular recognition systems. In this paper, an array of quartz microbalance sensors is complemented by an array of capacitors obtained from a commercial biometrics fingerprints detector. The two sets of transducers, properly functionalized by sensitive molecular and polymeric films, are utilized for the estimation of adulteration in gasolines, and in particular to quantify the content of ethanol in gasolines, an application of importance for Brazilian market. Results indicate that the hybrid system outperforms the individual sensor arrays even if the quantification of ethanol in gasoline, due to the variability of gasolines formulation, is affected by a barely acceptable error. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Accurate price forecasting for agricultural commodities can have significant decision-making implications for suppliers, especially those of biofuels, where the agriculture and energy sectors intersect. Environmental pressures and high oil prices affect demand for biofuels and have reignited the discussion about effects on food prices. Suppliers in the sugar-alcohol sector need to decide the ideal proportion of ethanol and sugar to optimise their financial strategy. Prices can be affected by exogenous factors, such as exchange rates and interest rates, as well as non-observable variables like the convenience yield, which is related to supply shortages. The literature generally uses two approaches: artificial neural networks (ANNs), which are recognised as being in the forefront of exogenous-variable analysis, and stochastic models such as the Kalman filter, which is able to account for non-observable variables. This article proposes a hybrid model for forecasting the prices of agricultural commodities that is built upon both approaches and is applied to forecast the price of sugar. The Kalman filter considers the structure of the stochastic process that describes the evolution of prices. Neural networks allow variables that can impact asset prices in an indirect, nonlinear way, what cannot be incorporated easily into traditional econometric models.
Resumo:
The `biomimetic` approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes the cell-scaffold constructs to a wider array of mechanical forces. The pump of the VAD has two chambers: a blood and a pneumatic chamber, separated by an elastic membrane. Pulsatile air-pressure is generated by a piston-type actuator and delivered to the pneumatic chamber, ejecting the fluid in the blood chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD`s inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber, variable throttle and reservoir, connected by silicone tubings. The reservoir sat on an elevated platform, allowing adjustment of ventricular preload between 0 and 11 mmHg. To allow for sterile gaseous exchange between the circuit interior and exterior, a 0.2 mu m filter was placed at the reservoir. Pressure and flow were registered downstream of the TE valve. The circuit was filled with culture medium and fitted in a standard 5% CO(2) incubator set at 37 degrees C. Pressure and flow waveforms were similar to those obtained under physiological conditions for the pulmonary circulation. The `cardiomimetic` approach presented here represents a new perspective to conventional biomimetic approaches in TE, with potential advantages. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Back in 1970s and 1980s, cogeneration plants in sugarcane mills were primarily designed to consume all bagasse, and produce steam and electricity to the process. The plants used medium pressure steam boilers (21 bar and 300 degrees C) and backpressure steam turbines. Some plants needed also an additional fuel, as the boilers were very inefficient. In those times, sugarcane bagasse did not have an economic value, and it was considered a problem by most mills. During the 1990s and the beginning of the 2000s, sugarcane industry faced an open market perspective, thus, there was a great necessity to reduce costs in the production processes. In addition, the economic value of by-products (bagasse, molasses, etc.) increased, and there was a possibility of selling electricity to the grid. This new scenario led to a search for more advanced cogeneration systems, based mainly on higher steam parameters (40-80 bar and 400-500 degrees C). In the future, some authors suggest that biomass integrated gasification combined cycles are the best alternative to cogeneration plants in sugarcane mills. These systems might attain 35-40% efficiency for the power conversion. However, supercritical steam cycles might also attain these efficiency values, what makes them an alternative to gasification-based systems. This paper presents a comparative thermoeconomic study of these systems for sugarcane mills. The configurations studied are based on real systems that could be adapted to biomass use. Different steam consumptions in the process are considered, in order to better integrate these configurations in the mill. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This work investigates the effects of photodegradation on the environmental stress cracking resistance of polycarbonate (PC). Injection molded samples were exposed to the ultraviolet (UV) light for various times in the laboratory prior to solvent contact. The bars were then stressed with two different loads in a tensile testing machine under the presence of ethanol. During this period, the stress relaxation was monitored and, after unloading, the ultimate properties were evaluated. Complementary tests were done by size exclusion chromatography, UV-visible spectroscopy, scanning electron microscopy, and light microscopy. The results indicated that ethanol causes significant modification in PC, with extensive surface crazing as well as reduction in mechanical properties. The previous degraded samples showed a higher level of stress relaxation and a greater loss in tensile strength in comparison with the undegraded ones. The synergist action of photodegradation and stress cracking in PC may be a consequence of the chemical changes caused by oxidation.
Resumo:
Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (similar to 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.
Isolation and analysis of bioactive isoflavonoids and chalcone from a new type of Brazilian propolis
Resumo:
Activity-directed fractionation and purification processes were employed to identify isoflavonoids with antioxidant and antimicrobial activities from Brazilian red propolis. Crude propolis was extracted with ethanol (80%. v/v) and fractioned by liquid-liquid extraction technique using hexane and chloroform. Since chloroform fraction showed strong antioxidant and antimicrobial activities it was purified and isolated using various chromatographic techniques. Comparing our spectral data (UV, NMR, and mass spectrometry) with values found in the literature, we identified two bioactive isoflavonoids (vestitol and neovestitol), together with one chalcone (isoliquiritigenin). Vestitol presented higher antioxidant activity against beta-carotene consumption than neovestitol. The antimicrobial activity of these three compounds against Staphylococcus aureus, Streptococcus mutans, and Actinomyces naeslundii was evaluated and we concluded that isoliquiritigenin was the most active one with lower MIC, ranging from 15.6 to 62.5 mu g/mL. Our results showed that Brazilian red propolis has biologically active isoflavonoids that may be used as a mild antioxidant and antimicrobial for food preservation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate the effects of 7-epiclusianone (7-epi) on specific virulence attributes of Streptococcus mutans in vitro and on development of dental caries in vivo. 7-Epi was obtained and purified from fruits of Rheedia brasiliensis. We investigated its influence on surface-adsorbed glucosyltransferase (Gtf) B activity, acid production, and viability of S. mutans in biofilms, as well as on caries development using a rodent model. 7-Epi (100 mu g/mL) significantly reduced the activity of surface-adsorbed GtfB (up to 48.0 +/- 1.8 of inhibition at 100 mu g/mL) and glyco-lytic pH-drop by S. mutans in biofilms (125 and 250 mu g/mL) (vs. vehicle control, p < 0.05). In contrast, the test compound did not significantly affect the bacterial viability when compared to vehicle control (15% ethanol, p > 0.05). Wistar rats treated topically with 7-epi (twice daily, 60-s exposure) showed significantly smaller number of and less severe smooth-and sulcal-surface carious lesions (p < 0.05), without reducing the S. mutans viable population from the animals` dental biofilms. In conclusion, the natural compound 7-epiclusianone may be a potentially novel pharmacological agent to prevent and control dental caries disease.
Resumo:
Precision agriculture (PA) technologies are being applied to crops in Brazil, which are important to ensure Brazil`s position in agricultural production. However, there are no studies available at present to indicate the extent to which PA technologies are being used in the country. Therefore, the main objective of this research was to investigate how the sugar-ethanol industry in So Paulo state, which produces 60% of the domestic sugarcane, is adopting and using these techniques. For this purpose, primary data were used, which were obtained from a questionnaire sent to all companies operating in the sugar-ethanol industry in the region. The aim was to determine to what extent these companies are adopting and using PA technologies, and also to promote a more in-depth discussion of the topic within the sugar-ethanol industry. Information was obtained on the features of the companies, on sources of information that they use for adopting these technologies, on their impacts on these companies and on obstacles hindering their adoption. The main conclusions of this research suggest that companies that adopt and use PA practices reap benefits, such as managerial improvements, higher yields, lower costs, minimization of environmental impacts and improvements in sugarcane quality.
Resumo:
This paper investigates whether initiatives for sustainability certification of Brazilian ethanol can be expected to stimulate a change among producers toward more sustainable production - and, if so, what those changes would likely be. Connected to this, several questions are raised including whether producers might prefer to target other markets with less stringent demands, and if certification might lead to structural changes in the sector because producers who lack the capacity to meet the new requirements cannot remain competitive. The analysis of interviews with a diverse group of stakeholders under the guidance of the Technological Innovation Systems framework allowed us identify different actions taken by the Brazilian sugarcane ethanol sector in response to requirements of sustainability. The interviewees agreed that sustainability certification is an important element for the expansion of biofuel production in Brazil. Brazilian stakeholders have created a platform for more competitive sustainable production and have initiated relevant processes in response to the development connected to sustainability certification. Yet, the certification activities have had a limited impact in terms of the number of involved stakeholders. But interview responses indicate that the sector may adapt to new certification requirements rather than leave markets where such requirements become established. Structural changes can be expected if certification requirements as they exist in many initiatives are introduced in unflexible ways. The social importance of the ethanol industry is large in Brazil and some adjustments for certification may be required. The paper concludes by suggesting some actions for the industry. (C) 2010 Society of Chemical Industry and John Wiley & Sons, Ltd
Resumo:
Brazilian agriculture covers about one-third of the land area and is expected to expand further We assessed the compliance of present Brazilian agriculture with environmental legislation and identified challenges for agricultural development connected to this legislation We found (i) minor illegal land use in protected areas under public administration, (ii) a large deficit in legal reserves and protected riparian zones on private farmland, and large areas of unprotected natural vegetation in regions experiencing agriculture expansion Achieving full compliance with the environmental laws as they presently stand would require drastic changes in agricultural land use, where large agricultural areas are taken out of production and converted back to natural vegetation The outcome of a full compliance with environmental legislation might not be satisfactory due to leakage, where pristine unprotected areas become converted to compensate for lost production as current agricultural areas are reconverted to protected natural vegetation. Realizing the desired protection of biodiversity and natural vegetation, while expanding agriculture to meet food and biofuel demand, may require a new approach to environmental protection New legal and regulatory instruments and the establishment of alternative development models should be considered
Resumo:
Governments are promoting biofuels and the resulting changes in land use and crop reallocation to biofuels production have raised concerns about impacts on environment and food security. The promotion of biofuels has also been questioned based on suggested marginal contribution to greenhouse gas emissions reduction, partly due to induced land use change causing greenhouse gas emissions. This study reports how the expansion of sugarcane in Brazil during 1996-2006 affected indicators for environment, land use and economy. The results indicate that sugarcane expansion did not in general contribute to direct deforestation in the traditional agricultural region where most of the expansion took place. The amount of forests on farmland in this area is below the minimum stated in law and the situation did not change over the studied period. Sugarcane expansion resulted in a significant reduction of pastures and cattle heads and higher economic growth than in neighboring areas. It could not be established to what extent the discontinuation of cattle production induced expansion of pastures in other areas, possibly leading to indirect deforestation. However, the results indicate that a possible migration of the cattle production reached further than the neighboring of expansion regions. Occurring at much smaller rates, expansion of sugarcane in regions such as the Amazon and the Northeast region was related to direct deforestation and competition with food crops, and appear not to have induced economic growth. These regions are not expected to experience substantial increases of sugarcane in the near future, but mitigating measures are warranted.
Resumo:
Aqueous extract of mate, made from dried leaves of Ilex paraguariensis, St. Hilaire, was shown to be effective during chilled storage for up to 10 days in protecting lipids and vitamin E against oxidation in pre-cooked meat balls made from chicken breast added 0.5% salt and packed in atmospheric air. Extracts made with water, methanol, ethanol or 70% aqueous acetone were evaluated by comparing (1) total phenolic content, (2) radical scavenging capacity, (3) effect on lipid oxidation in a food emulsion model, and in liposomes. Based on the three-step evaluation, aqueous mate extract was preferred for food use. Dried leaves were further compared to dried rosemary leaves in chicken meat balls, and mate (0.05 and 0.10%) found to yield equal or better protection than rosemary at the same concentration against formation of secondary lipid oxidation products.
Resumo:
Leaves from four different Ginkgo biloba L. trees (1 and 2 - females; 3 and 4 - males), grown at the same conditions, were collected during a period of 5 months (from June to October, 2007). Water and 12% ethanol extracts were analyzed for total phenolics content, antioxidant activity, phenolic profile, and the potential in vitro inhibitory effects on alpha-amylase, alpha-glucosidase, and Angiotensin I-Converting Enzyme (ACE) enzymes related to the management of diabetes and hypertension. The results indicated a significant difference among the trees in all functional benefits evaluated in the leaf extracts and also found important seasonal variation related to the same functional parameters. In general, the aqueous extracts had higher total phenolic content than the ethanolic extracts. Also, no correlation was found between total phenolics and antioxidant activity. In relation to the ACE inhibition, only ethanolic extracts had inhibitory activity. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study was conducted to evaluate the natural variability of total, extractable and non-extractable phenolics in pigmented and non-pigmented rice genotypes (Oryza sativa L.) and to estimate whether the contents and distribution of these compounds are typical for genotypes from indica and japonica subspecies. Twenty-one samples of commercial as well as new genotypes of brown rice, including seven pigmented genotypes were obtained from two Agronomic Institutes in South Brazil. Free and conjugated phenolics were extracted with ethanol, while bound phenolics were released by alkaline hydrolysis. Total phenolics were estimated in both fractions by the Folin-Ciocalteau method. Genotypes from Japonica and indica non-pigmented subspecies were not statistically distinguishable from each other, but differences in phenolic contents were associated with pericarp color. Despite individual differences, total phenolics were four times higher in pigmented than in non-pigmented genotypes (4246 and 1073 mg ferulic acid equiv. kg(-1), respectively). These high amounts were mostly due to the presence of extractable (free and conjugated) phenolics, which comprised up to 81% of total phenolics for pigmented genotypes. Non-extractable (bound) phenolics comprised 40% of total phenolics of non-pigmented rice genotypes while pigmented genotypes presented greater absolute amounts, but their contribution on total phenolics was small. (C) 2008 Elsevier Inc. All rights reserved.