297 resultados para well production


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xylitol enzymatic production can be an alternative to chemical and microbial processes, because of advantages like higher conversion efficiency. However, for an adequate conversion, it is necessary to investigate the effect of many parameters, such as buffer initial concentration, pH, temperature, agitation, etc. In this context, the objective of this work was to evaluate xylitol enzymatic production under different Tris buffer initial concentrations in order to determine the best condition for this parameter to begin the reaction. The best results were obtained when Tris buffer initial concentration was 0.22 M, reaching 0.31 g L(-1) h(-1) xylitol volumetric productivity with 99% xylose-xylitol conversion efficiency. Although the increase in buffer concentration allowed better pH maintenance, it hindered the catalysis. The results demonstrate that this bioreaction is greatly influenced by involved ions concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sugarcane bagasse hemicellulose was isolated in a one-step chemical extraction using hydrogen peroxide in alkaline media. The polysaccharide containing 80.9% xylose and small amounts of L-arabinose, 4-O-methyl-D-glucuronic acid and glucose, was hydrolyzed by crude enzymatic extracts from Thermoascus aurantiacus at 50 degrees C. Conditions of enzymatic hydrolysis leading to the best yields of xylose and xylooligosaccharides (DP 2-5) were investigated using substrate concentration in the range 0.5-3.5% (w/v), enzyme load 40-80 U/g of the substrate, and reaction time from 3 to 96 h, applying a 22 factorial design. The maximum conversion to xylooligosaccharides (37.1%) was obtained with 2.6% of substrate and xylanase load of 60 U/g. The predicted maximum yield of xylobiose by a polynomial model was 41.6%. Crude enzymatic extract of T. aurantiacus generate from sugarcane bagasse hemicellulose 39% of xylose, 59% of xylobiose, and 2% of other xylooligosaccharides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a thermoeconomic optimization methodology for the analysis and design of energy systems. This methodology involves economic aspects related to the exergy conception, in order to develop a tool to assist the equipment selection, operation mode choice as well as to optimize the thermal plants design. It also presents the concepts related to exergy in a general scope and in thermoeconomics which combines the thermal sciences principles (thermodynamics, heat transfer, and fluid mechanics) and the economic engineering in order to rationalize energy systems investment decisions, development and operation. Even in this paper, it develops a thermoeconomic methodology through the use of a simple mathematical model, involving thermodynamics parameters and costs evaluation, also defining the objective function as the exergetic production cost. The optimization problem evaluation is developed for two energy systems. First is applied to a steam compression refrigeration system and then to a cogeneration system using backpressure steam turbine. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to evaluate the ethanol production from the sugars contained in the sugarcane bagasse hemicellulosic hydrolysate with the yeast Pichia stipitis DSM 3651. The fermentations were carried out in 250-mL Erlenmeyers with 100 mL of medium incubated at 200 rpm and 30 A degrees C for 120 h. The medium was composed by raw (non-detoxified) hydrolysate or by hydrolysates detoxified by pH alteration followed by active charcoal adsorption or by adsorption into ion-exchange resins, all of them supplemented with yeast extract (3 g/L), malt extract (3 g/L), and peptone (5 g/L). The initial concentration of cells was 3 g/L. According to the results, the detoxification procedures removed inhibitory compounds from the hemicellulosic hydrolysate and, thus, improved the bioconversion of the sugars into ethanol. The fermentation using the non-detoxified hydrolysate led to 4.9 g/L ethanol in 120 h, with a yield of 0.20 g/g and a productivity of 0.04 g L(-1) h(-1). The detoxification by pH alteration and active charcoal adsorption led to 6.1 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.13 g L(-1) h(-1). The detoxification by adsorption into ion-exchange resins, in turn, provided 7.5 g/L ethanol in 48 h, with a yield of 0.30 g/g and a productivity of 0.16 g L(-1) h(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different types of activated carbon were prepared by chemical activation of brewer`s spent grain (BSG) lignin using H(3)PO(4) at various acid/lignin ratios (1, 2, or 3 g/g) and carbonization temperatures (300, 450, or 600 degrees C), according to a 2(2) full-factorial design. The resulting materials were characterized with regard to their surface area, pore volume, and pore size distribution, and used for detoxification of BSG hemicellulosic hydrolysate (a mixture of sugars, phenolic compounds, metallic ions, among other compounds). BSG carbons presented BET surface areas between 33 and 692 m(2)/g, and micro- and mesopores with volumes between 0.058 and 0.453 cm(3)/g. The carbons showed high capacity for adsorption of metallic ions, mainly nickel, iron, chromium, and silicon. The concentration of phenolic compounds and color were also reduced by these sorbents. These results suggest that activated carbons with characteristics similar to those commercially found and high adsorption capacity can be produced from BSG lignin. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The combined effects of vanillin and syringaldehyde on xylitol production by Candida guilliermondii using response surface methodology (RSM) have been studied. A 2(2) full-factorial central composite design was employed for experimental design and analysis of the results. RESULTS: Maximum xylitol productivities (Q(p) = 0.74 g L(-1) h(-1)) and yields (Y(P/S) = 0.81 g g(-1)) can be attained by adding only vanillin at 2.0 g L(-1) to the fermentation medium. These data were closely correlated with the experimental results obtained (0.69 +/- 0.04 g L(-1) h(-1) and 0.77 +/- 0.01 g g(-1)) indicating a good agreement with the predicted value. C. guilliermondii was able to convert vanillin completely after 24 h of fermentation with 94% yield of vanillyl alcohol. CONCLUSIONS: The bioconversion of xylose into xylitol by C. guilliermondii is strongly dependent on the combination of aldehydes and phenolics in the fermentation medium. Vanillin is a source of phenolic compound able to improve xylitol production by yeast. The conversion of vanillin to alcohol vanilyl reveals the potential of this yeast for medium detoxification. (C) 2009 Society of Chemical Industry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viable cells of Candida guilliermondii were immobilized by inclusion into polyvinyl alcohol (PVA) hydrogel using the freezing-thawing method. Entrapment experiments were planned according to a 2(3) full factorial design, using the PVA concentration (80, 100, and 120 g L(-1)), the freezing temperature (-10, -15, and -20 degrees C), and the number of freezing-thawing cycles (one, three, and five) as the independent variables, integrated with three additional tests to estimate the errors. The effectiveness of the immobilization procedure was checked in Erlenmeyer flasks as the pellet capability to catalyze the xylose-to-xylitol bioconversion of a medium based on sugarcane bagasse hemicellulosic hydrolysate. To this purpose, the yield of xylitol on consumed xylose, xylitol volumetric productivity, and cell retention yield were selected as the response variables. Cell pellets were then used to perform the same bioconversion in a stirred tank reactor operated at 400 rpm, 30 degrees C, and 1.04 vvm air flowrate. At the end of fermentation, a maximum xylitol concentration of 28.7 g L(-1), a xylitol yield on consumed xylose of 0.49 g g(-1) and a xylitol volumetric productivity of 0.24 g L(-1) h(-1) were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study provides a preliminary contribution to the development of a bioprocess for the contintious production of xylitol from hemicellulosic hydrolyzate utilizing Candida guilliermondii cells immobilized onto natural sugarcane bagasse fibers. To this purpose, cells of this yeast were submitted to batch tests of ""in situ"" adsorption onto crushed and powdered sugarcane bagasse after treatment with 0.5 M NaOH. The results obtained on a xylose-based semi-synthetic medium were evaluated in terms of immobilization efficiency, cell retention and specific growth rates of suspended, immobilized and total cells. The first two parameters were shown to increase along the immobilization process, reached maximum values of 50.5% and 0.31 g immobilized cells/g bagasse after 21 h and then sharply decreased. The specific growth rate of suspended cells continuously increased during the immobilization tests, while that of the immobilized ones, after an initial growth, exhibited decreasing values. Under the conditions selected for cell immobilization, fermentation also took place with promising results. The yields of xylitol and biomass on consumed xylose were 0.65 and 0.18 g/g, respectively, xylitol and biomass productivities 0.66 and 0.13 g L-1 h(-1), and the efficiency of xylose-to-xylitol bioconversion was 70.8%. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To analyse the sensitivity and specificity of clinical indicators of ineffective airway clearance in children with congenital heart disease and to identify the indicators that have high predictive power. The precise establishment of nursing diagnoses has been found to be one of the factors contributing to higher quality of care and cost reduction in healthcare institutions. The use of indicators to diagnose ineffective airway clearance could improve care of children with congenital heart disease. Longitudinal study. Participants consisted of 45 children, <= 1 year of age, with congenital heart disease, who had not had definitive or palliative surgical correction. Six assessments were made at 2-day intervals. Each clinical indicator was defined based on previously established operational criteria. Sensitivity, specificity and positive and negative predictive values of each indicator were calculated based on a model for the longitudinal data. A nursing diagnosis of ineffective airway clearance was made in 31% of patients on the first assessment, rising to 71% on the last assessment, for a 40% increase. Sensitivity was highest for Changes in Respiratory Rates/Rhythms (0.99), followed by Adventitious Breath Sounds (0.97), Sputum Production (0.85) and Restlessness (0.53). Specificity was higher for Sputum Production (0.92), followed by Restlessness (0.73), Adventitious Breath Sounds (0.70) and Changes in Respiratory Rates/Rhythms (0.17). The best positive predictive values occurred for Sputum Production (0.93) and Adventitious Breath Sounds (0.80). Adventitious Breath Sounds followed by Sputum Production were the indicators that had the best overall sensitivity and specificity as well as the highest positive predictive values. The use of simple indicators in nursing diagnoses can improve identification of ineffective airway clearance in children with congenital heart disease, thus leading to early treatment of the problem and better care for these children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work evaluated the effect of the Amblyomma cajennense tick on the immune response of BALB/c mice and on horse lymph node cell proliferation. We observed that mice do not develop resistance to nymphs of this tick species and that lymphocyte proliferation of this host is inhibited by tick saliva, nymphal extract, or infestations. Horse lymph node cell proliferation is inhibited by tick saliva as well. Mice lymphocytes under the effect of tick saliva, nymphal extract, or infestations display a predominantly. p Th-2 cytokine production pattern. Observed results partially explain this tick`s disease vectoring capacity and broad host range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last few years, the evolution of fieldbus and computers networks allowed the integration of different communication systems involving both production single cells and production cells, as well as other systems for business intelligence, supervision and control. Several well-adopted communication technologies exist today for public and non-public networks. Since most of the industrial applications are time-critical, the requirements of communication systems for remote control differ from common applications for computer networks accessing the Internet, such as Web, e-mail and file transfer. The solution proposed and outlined in this work is called CyberOPC. It includes the study and the implementation of a new open communication system for remote control of industrial CNC machines, making the transmission delay for time-critical control data shorter than other OPC-based solutions, and fulfilling cyber security requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The general flowshop scheduling problem is a production problem where a set of n jobs have to be processed with identical flow pattern on in machines. In permutation flowshops the sequence of jobs is the same on all machines. A significant research effort has been devoted for sequencing jobs in a flowshop minimizing the makespan. This paper describes the application of a Constructive Genetic Algorithm (CGA) to makespan minimization on flowshop scheduling. The CGA was proposed recently as an alternative to traditional GA approaches, particularly, for evaluating schemata directly. The population initially formed only by schemata, evolves controlled by recombination to a population of well-adapted structures (schemata instantiation). The CGA implemented is based on the NEH classic heuristic and a local search heuristic used to define the fitness functions. The parameters of the CGA are calibrated using a Design of Experiments (DOE) approach. The computational results are compared against some other successful algorithms from the literature on Taillard`s well-known standard benchmark. The computational experience shows that this innovative CGA approach provides competitive results for flowshop scheduling; problems. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30 degrees C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8 h. The reactor R1 operating with a HRT of 2 h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H(2) mol(-1) glucose with 1.3 mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation was performed regarding the application of a mechanically stirred anaerobic sequencing batch biofilm reactor containing immobilized biomass on inert polyurethane foam (AnSBBR) to the treatment of soluble metalworking fluids to remove organic matter and produce methane. The effect of increasing organic matter and reactor fill time, as well as shock load, on reactor stability and efficiency have been analyzed. The 5-L AnSBBR was operated at 30 A degrees C in 8-h cycles, agitation of 400 rpm, and treated 2.0 L effluent per cycle. Organic matter was increased by increasing the influent concentration (500, 1,000, 2,000, and 3,000 mg chemical oxygen demand (COD)/L). Fill times investigated were in the batch mode (fill time 10 min) and fed-batch followed by batch (fill time 4 h). In the batch mode, organic matter removal efficiencies were 87%, 86%, and 80% for influent concentrations of 500, 1,000, and 2,000 mgCOD/L (1.50, 3.12, and 6.08 gCOD/L.d), respectively. At 3,000 mgCOD/L (9.38 gCOD/L.d), operational stability could not be achieved. The reactor managed to maintain stability when a shock load twice as high the feed concentration was applied, evidencing the robustness of the reactor to potential concentration variations in the wastewater being treated. Increasing the fill time to 4 h did not improve removal efficiency, which was 72% for 2,000 mgCOD/L. Thus, gradual feeding did not improve organic matter removal. The concentration of methane formed at 6.08 gCOD/L was 5.20 mmolCH(4), which corresponded to 78% of the biogas composition. The behavior of the reactor during batch and fed-batch feeding could be explained by a kinetic model that considers organic matter consumption, production, and consumption of total volatile acids and methane production.