291 resultados para alpha-gal A activity
Resumo:
Mitochondria and NADPH oxidase activation are concomitantly involved in pathogenesis of many vascular diseases. However, possible cross-talk between those ROS-generating systems is unclear. We induced mild mitochondrial dysfunction due to mitochondrial DNA damage after 24 h incubation of rabbit aortic smooth muscle (VSMC) with 250 ng/mL ethidium bromide (EtBr). VSMC remained viable and had 29% less oxygen consumption, 16% greater baseline hydrogen peroxide, and unchanged glutathione levels. Serum-stimulated proliferation was unaltered at 24 h. Although PCR amplification of several mtDNA sequences was preserved, D-Loop mtDNA region showed distinct amplification of shorter products after EtBr. Such evidence for DNA damage was further enhanced after angiotensin-II (AngII) incubation. Remarkably, the normally observed increase in VSMC membrane fraction NADPH oxidase activity after AngII was completely abrogated after EtBr, together with failure to upregulate Nox1 mRNA expression. Conversely, basal Nox4 mRNA expression increased 1.6-fold, while being unresponsive to AngII. Similar loss in AngII redox response occurred after 24 h antimycin-A incubation. Enhanced Nox4 expression was unassociated with endoplasmic reticulum stress markers. Protein disulfide isomerase, an NADPH oxidase regulator, exhibited increased expression and inverted pattern of migration to membrane fraction after EtBr. These results unravel functionally relevant cross-talk between mitochondria and NADPH oxidase, which markedly affects redox responses to AngII. Antioxid Redox Signal 11, 1265-1278.
Resumo:
The yeast nucleolar protein Nop8p has previously been shown to interact with Nip7p and to be required for 60S ribosomal subunit formation. Although depletion of Nop8p in yeast cells leads to premature degradation of rRNAs, the biochemical mechanism responsible for this phenotype is still not known. In this work, we show that the Nop8p amino-terminal region mediates interaction with the 5.8S rRNA, while its carboxyl-terminal portion interacts with Nip7p and can partially complement the growth defect of the conditional mutant strain Dnop8/GAL:NOP8. Interestingly, Nop8p mediates association of Nip7p to pre-ribosomal particles. Nop8p also interacts with the exosome subunit Rrp6p and inhibits the complex activity in vitro, suggesting that the decrease in 60S ribosomal subunit levels detected upon depletion of Nop8p may result from degradation of pre-rRNAs by the exosome. These results strongly indicate that Nop8p may control the exosome function during pre-rRNA processing.
Resumo:
Enhanced mitochondrial biogenesis promoted by eNOS activation is believed to play a central role in the beneficial effects of calorie restriction (CR). Since treatment of mice with dinitrophenol (DNP) promotes health and lifespan benefits similar to those observed in CR, we hypothesized that it could also impact biogenesis. We found that DNP and CR increase citrate synthase activity, PGC-1 alpha, cytochrome c oxidase and mitofusin-2 expression, as well as fasting plasma levels of NO(center dot) products. In addition, eNOS and Akt phosphorylation in skeletal muscle and visceral adipose tissue was activated in fasting CR and DNP animals. Overall, our results indicate that systemic mild uncoupling activates eNOS and Akt-dependent pathways leading to mitochondrial biogenesis.
Resumo:
This study investigated the composition and antifungal activity against Cladosporium sphaerospermum and Cladosporium cladosporioides of essential oils of leaves of Piper cernuum, Piper diospyrifolium, Piper crassinervium, Piper solmsianum and Piper umbelata and fruits of P. cernuum and P. diospyrifolium. The essentials oils were analyzed by GC-MS and submitted of the antifungal activity tests. The essential oils of fruits from P. cernuum and leaves of P. crassinervium and P. solmsianum showed potential antifungal activity against C. sphaerospermum and C. cladosporioides. In addition, this is the first report of the composition of essential oils of fruits of P. cernuum and P. diospyrifolium.
Resumo:
In the scope of our ongoing research on bioactive agents from natural sources, 24 extracts and fractions obtained from Piper arboreum Aub. and Piper tuberculatum Jacq. ( Piperaceae) were screened for antifungal activity by using broth microdilution method. The current investigation reveals that P. arboreum extracts and fractions were more effective against Candida krusei and Candida parapsilosis than Cryptococcus neoformans. The growth of Candida albicans was weakly affected by all the tested extracts and fractions. The strongest effects were observed for hexane and ethyl acetate fractions from leaves of P. arboreum, with MIC values ( in mu g/ml) of 15.6 and 31.2 mu g/ml against C. krusei, respectively. Additionally, phytochemical investigation of the hexane fraction of P. arboreum leaves furnished 3 pyrrolidine amides; piperyline, 4,5-dihydropiperyline and tetrahydropiperyline, which could be responsible, at least in part for the observed antifungal activity. The most active compound, tetrahydropiperyline, displayed MIC values of 15.6 mu g/ml against C. krusei, C. parapsilosis and C. neoformans.
Resumo:
Post-settlement processes are a major focus in the study of the dynamics of marine populations and communities. Post-settlement movement of juveniles is an important, but often ignored, process which affects local predator-prey and competitive interactions. We used benthic suction sampling and pitfall traps to examine density and locomotory activity of Carcinus maenas juveniles in different intertidal habitat types in the Rio Mira Estuary, Portugal, to better understand intra-specific interactions in a system where density-dependent processes are known to regulate population dynamics. As expected, significantly higher densities of juvenile shore crabs were found from bare mud compared to densely vegetated habitats. At the time of sampling, small and intermediate stages together outnumbered by far the larger juveniles. Conversely, larger crabs were much more frequent than smaller ones in traps. A locomotory index (LI), i.e. the ratio between crab catch in pitfall traps and their density within their moving range, is proposed as a measure of movement. LI analyses indicated that: (1) movement is an order of magnitude higher in large than small juveniles and much higher in sparse than dense vegetation cover; (2) activity of small juveniles is mostly crepuscular, regardless of vegetation cover; and (3) movement of large juveniles is very limited in dense Zostera patches, but very high in sparsely vegetated areas, during the day and night. These results suggest that small juveniles are relatively protected under dense vegetation cover due to lower mobility of larger crabs, and provide evidence of temporal segregation of activity windows between juvenile crabs of different sizes, which may be a key mechanism to reduce cannibalism and therefore increase the carrying capacity of nursery habitats. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A single reaction interface flow analysis (SIFA) system for the monitoring of mannitol in pharmaceutical formulations and human urine is presented. The developed approach takes advantage of the mannitol scavenger aptitude to inhibit the chemiluminescent reaction between luminol and myoglobin in the absence of H(2)O(2). The SIFA system facilitated the fully automation of the developed methodology, allowing the in-line reproducible handling of chemical species with a very short lifetime as is the case of the hydroxyl radical generated in the abovementioned luminol/myoglobin reaction. The proposed methodology allowed the determination of mannitol concentrations between 25 mmol L(-1) and 1 mol L(-1), with good precision (R.S.D. < 4.7%, n = 3) and a sampling frequency of about 60 h(-1). The procedure was applied to the determination of mannitol in pharmaceuticals and in human urine samples Without any pretreatment process. The results obtained for pharmaceutical formulations were statistically comparable to those provided by the reference method (R.D. < 4.6%); recoveries values obtained in the analysis of spiked urine samples (between 94.9 and 105.3% of the added amount) were also satisfactory. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Transplantation of pancreatic islets constitutes a promising alternative treatment for type 1 diabetes. However, it is limited by the shortage of organ donors. Previous results from our laboratory have demonstrated beneficial effects of recombinant human prolactin (rhPRL) treatment on beta cell cultures. We therefore investigated the role of rhPRL action in human beta cell survival, focusing on the molecular mechanisms involved in this process. Human pancreatic islets were isolated using an automated method. Islet cultures were pre-treated in the absence or presence of rhPRL and then subjected to serum starvation or cytokine treatment. Beta cells were labelled with Newport green and apoptosis was evaluated using flow cytometry analysis. Levels of BCL2 gene family members were studied by quantitative RT-PCR and western blot. Caspase-8, -9 and -3 activity, as well as nitric oxide production, were evaluated by fluorimetric assays. The proportion of apoptotic beta cells was significantly lowered in the presence of rhPRL under both cell death-induced conditions. We also demonstrated that cytoprotection may involve an increase of BCL2/BAX ratio, as well as inhibition of caspase-8, -9 and -3. Our study provides relevant evidence for a protective effect of lactogens on human beta cell apoptosis. The results also suggest that the improvement of cell survival may involve, at least in part, inhibition of cell death pathways controlled by the BCL2 gene family members. These findings are highly relevant for improvement of the islet isolation procedure and for clinical islet transplantation.
Resumo:
In this paper we report findings on the presence of circadian rhythms in six species of cave-dwelling fishes from Brazil. Locomotor activity of islolated individuals was automatically recorded for 10 consecutive days under constant darkness. The species tested show varied degrees of specialization to subterranean life and we found varying degrees of the circadian components of locomotor activity as measured by the periodogram algorhythm of Lomb-Scargle. Both the presence and robustness of the circadian components seem to vary according to the degree of specialization to subterranean life, the more specialized, the less circadian rhythmicity was detected.
Resumo:
Evidence demonstrates that sympathetic nervous system (SNS) activation causes osteopenia via beta(2)-adrenoceptor (beta(2)-AR) signaling. Here we show that female mice with chronic sympathetic hyperactivity owing to double knockout of adrenoceptors that negatively regulate norepinephrine release, alpha(2A)-AR and alpha(2C)-AR(alpha(2A)/alpha(2C)-ARKO), present an unexpected and generalized phenotype of high bone mass with decreased bone resorption and increased formation. In alpha(2A)/alpha(2C)-ARKO versus wild-type (WT) mice, micro-computed tomographic (mu CT) analysis showed increased, better connected, and more plate-shaped trabeculae in the femur and vertebra and increased cortical thickness in the vertebra, whereas biomechanical analysis showed increased tibial and femoral strength. Tibial mRNA expression of tartrate-resistant acid phosphatase (TRACP) and receptor activator of NF-kappa B (RANK), which are osteoclast-related factors, was lower in knockout (KO) mice. Plasma leptin and brain mRNA levels of cocaine amphetamine-regulated transcript (CART), which are factors that centrally affect bone turnover, and serum levels of estradiol were similar between mice strains. Tibial beta(2)-AR mRNA expression also was similar in KO and WT littermates, whereas alpha(2A)-, alpha(2B)- and alpha(2C)-AR mRNAs were detected in the tibia of WT mice and in osteoblast-like MC3T3-E1 cells. By immunohistochemistry, we detected alpha(2A)-, alpha(2B)-, alpha(2C)- and beta(2)-ARs in osteoblasts, osteoclasts, and chondrocytes of 18.5-day-old mouse fetuses and 35-day-old mice. Finally, we showed that isolated osteoclasts in culture are responsive to the selective alpha(2)-AR agonist clonidine and to the nonspecific alpha-AR antagonist phentolamine. These findings suggest that beta(2)-AR is not the single adrenoceptor involved in bone turnover regulation and show that alpha(2)-AR signaling also may mediate the SNS actions in the skeleton. (c) 2011 American Society for Bone and Mineral Research.
Resumo:
The purpose of this study was to test the hypotheses that in obese children: 1) hypocaloric diet (D) improves both heart rate recovery at 1 min (Delta HRR1) cfter an exercise test, and cardiac autonomic nervous system activity (CANSA) in obese children; 2) Diet and exercise training (DET) combined leads to greater improvement in both Delta HRR1 after an exercise test and in CANSA, than D alone. Moreover, we examined the relationships among Delta HRR1, CANSA, cardiorespiratory fitness and anthropometric variables (AV) in obese children submitted to D and to DET. 33 obese children (10 +/- 0.2 years; body mass index (BMI) >95(th) percentile) were divided into 2 groups: D (n = 15; BMI = 31 +/- 1 kg/m(2)) and DET (n = 18; 29 +/- 1 kg/m(2)). All children performed a maximal cardiopulmonary exercise test on a treadmill. The Delta HRR1 was defined as the difference between heart rate at peak and at 1-min post-exercise. CANSA was assessed using power spectral analysis of heart rate variability at rest. The sympathovagal balance (low frequency and high frequency ratio, LF/HF) was measured. After interventions, all obese children showed reduced body weight (P < 0.05). The D group did not improve in terms of peak VO(2), Delta HRR1 or LF/HF ratio (P > 0.05). In contrast, the DET group showed increased peak VO(2) (P = 0.01) and improved Delta HRR1 (Delta HRR1 = 37.3 +/- 2.6; P = 0.01) and LF/HF ratio (P = 0.001). The DET group demonstrated significant relationships among Delta HRR1, peak VO(2) and CANSA (P < 0.05). In conclusion, DET, in contrast to D, promoted improved Delta HRR1 and CANSA in obese children, suggesting a positive influence of increased levels of cardiorespiratory fitness by exercise training on cardiac autonomic activity.
Resumo:
Volitional animal resistance training constitutes an important approach to modeling human resistance training. However, the lack of standardization protocol poses a frequent impediment to the production of skeletal muscle hypertrophy and the study of related physiological variables (i.e., cellular damage/inflammation or metabolic stress). Therefore, the purposes of the present study were: (1) to test whether a long-term and low frequency experimental resistance training program is capable of producing absolute increases in muscle mass; (2) to examine whether cellular damage/inflammation or metabolic stress is involved in the process of hypertrophy. In order to test this hypothesis, animals were assigned to a sedentary control (C, n = 8) or a resistance trained group (RT, n = 7). Trained rats performed 2 exercise sessions per week (16 repetitions per day) during 12 weeks. Our results demonstrated that the resistance training strategy employed was capable of producing absolute mass gain in both soleus and plantaris muscles (12%, p<0.05). Furthermore, muscle tumor necrosis factor (TNF-alpha) protein expression (soleus muscle) was reduced by 24% (p<0.01) in trained group when compared to sedentary one. Finally, serum creatine kinase (CK) activity and serum lactate concentrations were not affected in either group. Such information may have practical applications if reproduced in situations where skeletal muscle hypertrophy is desired but high mechanical stimuli of skeletal muscle and inflammation are not. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Exercise training is known to promote relevant changes in the properties of skeletal muscle contractility toward powerful fibers. However, there are few studies showing the effect of a well-established exercise training protocol on Ca(2+) handling and redox status in skeletal muscles with different fiber-type compositions. We have previously standardized a valid and reliable protocol to improve endurance exercise capacity in mice based on maximal lactate steady-state workload (MLSSw). The aim of this study was to investigate the effect of exercise training, performed at MLSSw, on the skeletal muscle Ca(2+) handling-related protein levels and cellular redox status in soleus and plantaris. Male C57BL/6J mice performed treadmill training at MLSSw over a period of eight weeks. Muscle fiber-typing was determined by myosin ATPase histochemistry, citrate synthase activity by spectrophotometric assay, Ca(2+) handling-related protein levels by Western blot and reduced to oxidized glutathione ratio (GSH:GSSG) by high-performance liquid chromatography. Trained mice displayed higher running performance and citrate synthase activity compared with untrained mice. Improved running performance in trained mice was paralleled by fast-to-slow fiber-type shift and increased capillary density in both plantaris and soleus. Exercise training increased dihydropyridine receptor (DHPR) alpha 2 subunit, ryanodine receptor and Na(+)/Ca(2+) exchanger levels in plantaris and soleus. Moreover, exercise training elevated DHPR beta 1 subunit and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) 1 levels in plantaris and SERCA2 levels in soleus of trained mice. Skeletal muscle GSH content and GSH:GSSG ratio was increased in plantaris and soleus of trained mice. Taken together, our findings indicate that MLSSw exercise-induced better running performance is, in part, due to increased levels of proteins involved in skeletal muscle Ca(2+) handling, whereas this response is partially dependent on specificity of skeletal muscle fiber-type composition. Finally, we demonstrated an augmented cellular redox status and GSH antioxidant capacity in trained mice.
Resumo:
The response of the myocardium to an ischaemic insult is regulated by two highly homologous protein kinase C (PKC) isozymes, delta and epsilon PKC. Here, we determined the spatial and temporal relationships between these two isozymes in the context of ischaemia/reperfusion (I/R) and ischaemic preconditioning (IPC) to better understand their roles in cardioprotection. Using an ex vivo rat model of myocardial infarction, we found that short bouts of ischaemia and reperfusion prior to the prolonged ischaemic event (IPC) diminished delta PKC translocation by 3.8-fold and increased epsilon PKC accumulation at mitochondria by 16-fold during reperfusion. In addition, total cellular levels of delta PKC decreased by 60 +/- 2.7% in response to IPC, whereas the levels of epsilon PKC did not significantly change. Prolonged ischaemia induced a 48 +/- 11% decline in the ATP-dependent proteasomal activity and increased the accumulation of misfolded proteins during reperfusion by 192 +/- 32%; both of these events were completely prevented by IPC. Pharmacological inhibition of the proteasome or selective inhibition of epsilon PKC during IPC restored delta PKC levels at the mitochondria while decreasing epsilon PKC levels, resulting in a loss of IPC-induced protection from I/R. Importantly, increased myocardial injury was the result, in part, of restoring a delta PKC-mediated I/R pro-apoptotic phenotype by decreasing pro-survival signalling and increasing cytochrome c release into the cytosol. Taken together, our findings indicate that IPC prevents I/R injury at reperfusion by protecting ATP-dependent 26S proteasomal function. This decreases the accumulation of the pro-apoptotic kinase, delta PKC, at cardiac mitochondria, resulting in the accumulation of the pro-survival kinase, epsilon PKC.
Resumo:
Heart failure (HF) is associated with changes in the skeletal muscle (SM) which might be a consequence of the unbalanced local expression of pro- (TNF-alpha) and anti- (IL-10) inflammatory cytokines, leading to inflammation-induced myopathy, and SM wasting. This local effect of HF on SM may, on the other hand, contribute to systemic inflammation, as this tissue actively secretes cytokines. Since increasing evidence points out to an anti-inflammatory effect of exercise training, the goal of the present study was to investigate its effect in rats with HF after post-myocardial infarction (MI), with special regard to the expression of TNF-alpha and IL-10 in the soleus and extensor digitorum longus (EDL), muscles with different fiber composition. Wistar rats underwent left thoracotomy with ligation of the left coronary artery, and were randomly assigned to either a sedentary (Sham-operated and MI sedentary) or trained (Sham-operated and MI trained) group. Animals in the trained groups ran on a treadmill (0% grade at 13-20 m/min) for 60 min/day, 5 days/week, for 8-10 weeks. The training protocol was able to reverse the changes induced by MI, decreasing TNF-alpha protein (26%, P < 0.05) and mRNA (58%, P < 0.05) levels in the soleus, when compared with the sedentary MI group. Training also increased soleus IL-10 expression (2.6-fold, P < 0.001) in post-MI HF rats. As a consequence, the IL-10/TNF-alpha ratio was increased. This ""anti-inflammatory effect"" was more pronounced in the soleus than in the EDL, suggesting a fiber composition dependent response. (C) 2009 Elsevier Ltd. All rights reserved.