245 resultados para Time for teaching preparation
Resumo:
Essential Oil of Thymus vulgaris: Preparation of Pharmaceutical Mouthwash Formulation and In Vitro Evaluation of the Bacterial Plaque-Inhibiting Properties. The aim of this study was to evaluate the in vitro effect of the essential oil of Thymus vulgaris (thyme) pure or incorporate in a alcohol-free pharmaceutical mouthwash formulation, against Streptococcus mutans (ATCC 25175), being determined the Minimal Inhibitory Concentration (MIC) and the effect in the bacterial plate formation. The MIC value obtained for the essential oil was 100 mu g/mL (1 %). The mouthwash pharmaceutical formulation containing commercial essential oil of T. vulgaris was preparated. Microbiological and macroscopic analysis as well as analyses for MEV confirmed the effectiveness of this new alcohol-free mouthwash formulation containing essential oil of T. vulgaris as agent with plaque-inhibiting properties and possible application in the preventive dentistry. The chemical characterization of the bioactive essential oil was accomplished by CG-MS, being verified the presence of carvacrol, p-cimene and alpha-pinene as major constituents.
Resumo:
The aim of the present work was to obtain an ophthalmic delivery system with improved mechanical and mucoadhesive properties that could provide prolonged retention time for the treatment of ocular diseases. For this, an in situ forming gel comprised of the combination of a thermosetting polymer, poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) (PEO-PPO-PEO, poloxamer), with a mucoadhesive agent (chitosan) was developed. Different polymer ratios were evaluated by oscillatory rheology, texture and mucoadhesive profiles. Scintigraphy studies in humans were conduced to verify the retention time of the formulations developed. The results showed that chitosan improves the mechanical strength and texture properties of poloxamer formulations and also confers mucoadhesive properties in a concentration-dependent manner. After a 10-min instillation of the poloxamer/chitosan 16:1 formulation in human eyes, 50-60% of the gel was still in contact with the cornea surface, which represents a fourfold increased retention in comparison with a conventional solution. Therefore, the developed formulation presented adequate mechanical and sensorial properties and remained in contact with the eye surface for a prolonged time. In conclusion, the in situ forming gel comprised of poloxamer/chitosan is a promising tool for the topical treatment of ocular diseases. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The application of nanoemulsions is due to have good stability, uniform spreading and enhance active penetration upon skin. Nanometer emulsions can be obtained by low-energy emulsification method. The required hydrophilic and lipophilic balance indicates the better balance of emulsifier for optimum system emulsification. Emulsion stability is evidently controlled for the properties of the adsorbed layer formed in the surface of its globules, know as potential zeta. The aim of this work was to evaluate the oil/water nanoemulsion of formulation obtained after 15 years of preparation. The results suggested that the nanoemulsion have performed stability for many years.
Resumo:
The present study aimed the preparation and characterization of ternary solid dispersions by direct spray drying of a liquid suspension containing curcumin, a solubility enhancer and a drying aid. The experiments followed a Box-Behnken design in order to evaluate the influence of temperature, ratio of curcumin: lipidic carrier, and the collodial silicon dioxide content on the characteristics of the microparticulated solid dispersions. The angle of repose, Hausner factor, Carr index, water activity, and solubility were used to characterize solid dispersions. The results show that water activity, Hausner factor, and Carr index varied in an acceptable range for pharmaceutical purposes. The condition that maximizes solubility was determined using an exploratory design based on a surface response analysis and allowed a 3200-fold increase in curcumin solubility. Ternary solid dispersion showed a 90% curcumin release after 10min during a dissolution test. The results show that the spray drying of a liquid feed is an attractive and promising alternative to obtain enhanced solubility drug ternary solid dispersions.
Resumo:
A novel method of preparation of water-in-oil-in-micelle-containing water (W/O/W(m)) Multiple emulsions using the one-step emulsification method is reported. These multiple emulsions were normal (not temporary) and stable over a 60 day test period. Previously, reported multiple emulsion by the one-step method were abnormal systems that formed at the inversion point of simple emulsion (where there is an incompatibility in the Ostwald and Bancroft theories, and typically these are O/W/O systems). Pseudoternary phase diagrams and bidimensional process-composition (phase inversion) maps were constructed to assist in process and composition optimization. The surfactants used were PEG40 hydrogenated castor oil and sorbitan oleate, and mineral and vegetables oils were investigated. Physicochemical characterization studies showed experimentally, for the First time, the significance of the ultralow surface tension point oil multiple emulsion formation by one-step via phase inversion processes. Although the significance of ultralow surface tension has been speculated previously, to the best of our knowledge, this is the first experimental confirmation. The multiple emulsion system reported here was dependent not only upon the emulsification temperature, but also upon the component ratios, therefore both the emulsion phase inversion and the phase inversion temperature were considered to fully explain their formation. Accordingly, it is hypothesized that the formation of these normal multiple emulsions is not a result of a temporary incompatibility (at the inversion point) during simple emulsion preparation, as previously reported. Rather, these normal W/O/W(m) emulsions are a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes. The formation of the primary emulsions (W/O) is in accordance with the Ostwald theory and the formation of the multiple emulsions (W/O/W(m)) is in agreement with the Bancroft theory.
Resumo:
The feasibility of detecting instability in wet spouted beds via pressure fluctuation (PF) time-series analyses was investigated. Experiments were carried out in a cylindrical Plexiglas column of diameter 150 mm with a conical base of internal angle 60 degrees, an inlet orifice diameter of 25 mm and glass beads of diameter 2.4 mm. Transducers at several axial positions measured PF time series with incremental addition of aqueous sucrose solutions of different concentrations. Liquid addition affected the spouted bed dynamics, causing irregular spouting, increased voidage in the annulus, increased fountain height, irregular annulus height, channelling, agglomeration, and adhesion of particles to the column walls. Autocorrelations indicated the appearance of periodicities in the PF signals with increasing sucrose addition. Dominant peaks in power-spectral density developed at low frequencies with changing system dynamics. The results indicate that PF signals furnish relevant information on system dynamics, useful for monitoring and control of spouted bed operations such as particle coating and drying of paste-like materials.
Resumo:
A simple method with a fast sample preparation procedure for total and inorganic mercury determinations in blood samples is proposed based on flow injection cold vapor inductively coupled plasma mass spectrometry (FI-CVICP-MS). Aliquots of whole blood (500 mL) are diluted 1 + 1 v/v with 10.0% v/v tetramethylammonium hydroxide (TMAH) solution, incubated for 3 h at room temperature and then further diluted 1 + 4 v/v with 2.0% v/v HCl. The inorganic Hg was released by online addition of L-cysteine and then reduced to elemental Hg by SnCl(2). On the other hand, total mercury was determined by on-line addition of KMnO(4) and then reduced to elemental Hg by NaBH(4). Samples were calibrated against matrix-matching. The method detection limit was found to be 0.80 mu g L(-1) and 0.08 mu g L(-1) for inorganic and total mercury, respectively. Sample throughput is 20 samples h(-1). The method accuracy is traceable to Standard Reference Material (SRM) 966 Toxic Metals in Bovine Blood from the National Institute of Standards and Technology (NIST). For additional validation purposes, human whole blood samples were analyzed by the proposed method and by an established CV AAS method, with no statistical difference between the two techniques at 95% confidence level on applying the t-test.
Resumo:
The present research investigated the influence of temperature and time of larvae culture on the infectivity of Strongyloides venezuelensis. Mice were infected s.c. with 1500 larvae of S. venezuelensis maintained at 28 degrees C for three days of culture (dc), 28 degrees C for seven dc or 18 degrees C for seven dc. On days 1,3, 5, 7, 14 and 21 post-infection the animals were sacrificed and cell numbers in the blood, peritoneal cavity fluid (PCF), broncoalveolar fluid (BALF), cytokines, immunoglobulins, number of parasites and eggs/g of feces were quantified. Results demonstrated an increase in eosinophils and mononuclear cells in the blood, PCF and HALF of infected mice. Larvae at 28 degrees C/3dc induced earlier eosinophils in the PCF and HALF as opposed to larvae at 28 degrees C/7dc and 18 degrees C/7dc. Larvae at 28 degrees C/7dc induced higher synthesis of IL-4. IL-5 and IL-10 on days Sand 7 post-infection. Larvae at 28 degrees C/3dc in culture induced higher synthesis of IL-12 than larvae of seven dc, but time in culture induced better synthesis of IFN-gamma, after larval migration had ceased and only adult worms were present. Larvae at 28 degrees C/3dc in culture induced higher synthesis of IgG and IgG1 and expelled less female parasites than larvae cultivated for seven days. In conclusion, it was observed that the infectivity of S. venezuelensis is influenced by variations in temperature and time of culture. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Objective: To describe an outbreak of imipenem-resistant metallo-beta-lactamase-producing Pseudomonas aeruginosa, enzyme type bla, by horizontal transmission in patients admitted to a mixed adult ICU. Methods: A case-control study was carried out, including 47 patients (cases) and 122 patients (control) admitted to the mixed ICU of a university hospital in Minas Gerais. Brazil from November 2003 to July 2005. The infection site, risk factors, mortality, antibiotic susceptibility, metallo-beta-lactamase (MBL) production, enzyme type, and clonal diversity were analyzed, Results: A temporal/spatial relationship was detected in most patients (94%), overall mortality was 55.3%, and pneumonia was the predominant infection (85%). The majority of isolates (95%) were resistant to imipenem and other antibiotics, except for polymyxin, and showed MBL production (76.7%). Only bla SPM-1 (33%) was identified in the 15 specimens analyzed. In addition, 4 clones were identified, with a predominance of clone A (61.5%) and B (23.1%). On multivariate analysis, advanced age, mechanical ventilation, tracheostomy, and previous imipenem use were significant risk factors for imipenem-resistant P. aeruginosa infection. Conclusions: Clonal dissemination of MBL-producing P. aeruginosa strains with a spatial/temporal relationship disclosed problems in the practice of hospital infection control, low adherence to hand hygiene, and empirical antibiotic use. (C) 2008 Elsevier Espana, S.L. All rights reserved.
Resumo:
A simple protocol for the Pd(OAc)(2)-catalyzed cross-coupling reaction of 1-benzoyl-(2S)-isopropyl-5-iodo-2,3-dihydro-4(H)-pyrimidin-4-ones with potassium aryltrifluoroborates was developed. The reaction is performed at 110 degrees C with a ligand-free catalyst. In all cases, complete conversion of the 1-benzoyl-(2S)-isopropyl-5-iodo-2,3-dihydro-4(H)-pyrimidin-4-ones and aryltrifluoroborates into the C-C coupling products was observed within 30-360 min. It is noteworthy that a large variety of groups present in the potassium aryltrifluoroborates (-CF(3), -OMe, -SEt, -CN, -CHO, -Cl, -Cbz, -NCbz, -OH, -CO(2)H) could be tolerated. Hydrogenation of the endocyclic double bonds in the Suzuki-Miyaura products followed by acid hydrolysis afforded highly enantioenriched alpha-aryl-substituted beta-amino acids.
Resumo:
This article examines the subject matter of learning within the context of information society, through an inquiry concerning both the reforms in education adopted in Brazil in the last thirty years and their results. It provides a revision on the explanations of school failure based on assumptions of learning problems due to cognitive and linguistic deficits. From the guidelines related with written school forms as well as the constant cultural oppression accomplished inside the school, the article claims the necessity of changing the psychological and pedagogic views that, under the label of democratic practices, determine school institutions and its daily life, by means of instrumental relations with knowledge that disregard the reading practices which are congenial to popular culture.
Resumo:
ArtinM is a D-mannose binding lectin that has been arousing increasing interest because of its biomedical properties, especially those involving the stimulation of Th1 immune response, which confers protection against intracellular pathogens The potential pharmaceutical applications of ArtinM have motivated the production of its recombinant form (rArtinM) so that it is important to compare the sugar-binding properties of jArtinM and rArtinM in order to take better advantage of the potential applications of the recombinant lectin. In this work, a biosensor framework based on a Quartz Crystal Microbalance was established with the purpose of making a comparative study of the activity of native and recombinant ArtinM protein The QCM transducer was strategically functionalized to use a simple model of protein binding kinetics. This approach allowed for the determination of the binding/dissociation kinetics rate and affinity equilibrium constant of both forms of ArtinM with horseradish peroxidase glycoprotein (HRP), a N-glycosylated protein that contains the trimannoside Man alpha 1-3[Man alpha 1-6]Man, which is a known ligand for jArtinM (Jeyaprakash et al, 2004). Monitoring of the real-time binding of rArtinM shows that it was able to bind HRP, leading to an analytical curve similar to that of jArtinM, with statistically equivalent kinetic rates and affinity equilibrium constants for both forms of ArtinM The lower reactivity of rArtinM with HRP than jArtinM was considered to be due to a difference in the number of Carbohydrate Recognition Domains (CRDs) per molecule of each lectin form rather than to a difference in the energy of binding per CRD of each lectin form. (C) 2010 Elsevier B V. All rights reserved
Resumo:
A variety of nanostructures are being investigated as functional drug carriers for treatment of a wide range of diseases, most notably cardiovascular defects, autoimmune diseases, and cancer. The aim of this present contribution is to evaluate potentially applicable nanomaterials in the diagnosis and treatment of cancer due to their photophysical and photobiological properties and complexation behavior. The delivery systems consisted of chloro-aluminum phthalocyanine associated with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. The preparation of the complex and its stoichiometry in an ethanol/buffer (3:1) solution were studied by spectroscopic techniques, which were defined as 1:2. The inclusion complex in the nanometer scale was observed on the basis of changes to the spectroscopic properties. The singlet oxygen production and complex photophysical parameters were determined by measuring luminescence at 1270 nm and by steady state and time resolved spectroscopic, respectively. The preparation of the complex was tested and analyzed with regard to cellular damage by visible light activation. The inclusion complex showed a higher singlet oxygen quantum yield compared with other systems and other photoactive dyes. There was also a reduction in the fluorescence quantum yield compared with the results obtained for zinc phthalocyanine in organic medium. The results reported clearly that the inclusion complex chloro-aluminum phthalocyanine/cyclodextrin showed some changes in its spectroscopy properties leading to better biodistribution and biocompatibility with a potential application in photodynamic therapy, especially in the case of neoplasy. Additionally, it also has non-oncological applications as a drug delivery system.
Resumo:
In this work, we report the synthesis, characterization and catalytic properties of a vanadium oxide-silicon oxide composite xerogel prepared by a soft chemistry approach. In order to obtain such material, we submitted a vanadium pentoxide gel previously synthesized via protonation of metavanadate species to an ""in situ"" progressive polycondensation into silica gel. The material has been characterized by X-ray diffraction, infrared spectroscopy, thermogravimetric analysis and scanning electron microscopy. Further, the catalytic activity of this material was evaluated for the epoxidation of styrene and cyclooctene using iodosylbenzene, hydrogen peroxide and m-chloroperbenzoic acid as the oxidizing agent.
Resumo:
Protein engineering is a powerful tool, which correlates protein structure with specific functions, both in applied biotechnology and in basic research. Here, we present a practical teaching course for engineering the green fluorescent protein (GFP) from Aequorea victoria by a random mutagenesis strategy using error-prone polymerase chain reaction. Screening of bacterial colonies transformed with random mutant libraries identified GFP variants with increased fluorescence yields. Mapping the three-dimensional structure of these mutants demonstrated how alterations in structural features such as the environment around the fluorophore and properties of the protein surface can influence functional properties such as the intensity of fluorescence and protein solubility.