214 resultados para Synthesis Models
Resumo:
Objective. We sought to evaluate the effects of immunosuppressant drugs (corticosteroid, cyclosporine [CsA], and tacrolimus [Tac]) on liver regeneration in growing animals submitted to 70% hepatectomy. Materials and Methods. Newborn and weaning rats were submitted to 70% hepatectomy receiving separately methylprednisolone, CsA, or Tac. All animals were sacrificed 24 hours after the procedure. The remnant liver lobes were subjected to histomorphometric analyses with determination of hepatocyte mitotic index. Results., Administration of immunosuppressants did not change the mitotic index of the regenerating liver in newborn animals. In weaning rats, methylprednisolone reduced the mitotic index (P = .01) and Tac caused a greater increase in this rate (P = .001). CsA had no effect on mitotic index. The number of hepatocyte mitoses in newborn animal livers was greater than that in weaning animal livers (P = .001). Conclusion. In situations in which intense, fast processes of liver regeneration are crucial, the advantages of the use of Tac must be considered, such as in pediatric transplant patients.
Resumo:
Background Obesity is related to a higher rate of infections and some types of cancer. Here we analyzed the impact of obesity and weight loss induced by Roux-en-Y gastric bypass (RYGB) on immunological parameters, i.e., cytokine productions and natural killer cell function. Methods We analyzed 28 morbidly obese patients before and 6 months after RYGB. Biochemical parameters were analyzed in plasma. The percent of natural killer (NK) cells, their cytotoxicity, and the production of cytokines by peripheral blood mononuclear cells were analyzed. The percent of NK cells was determined by flow cytometry and cytokine production determined by enzyme-linked immunosorbent assay. NK cytotoxicity was determined by the lactate dehydrogenase release assay. Results The weight loss 6 months following surgery was 35.3 +/- 4.5 kg. RYGB also improves biochemical parameters. No significant difference was found in the percent of NK cells after surgery. We found an increase in the production of interferon-gamma, interleukin (IL)-12 and IL-18, but not in IL-2, 6 months after RYGB. Cytotoxic activity of NK cells was significantly enhanced 6 months after RYGB [17.1 +/- 14.7% before RYGB vs 51.8 +/- 11.3% at 6 months after, at 40: 1 effector to target cell ratio; p<0.001]. We observed significant post-surgical improvement in the cytotoxic activity curve in 22 out of 28 patients (78.6%), irrespective of the target to effector cell ratio. Conclusions The weight loss induced by RYGB modifies the production of cytokines related with NK cell function and improves its activity.
Resumo:
Context: Thyroglobulin (TG) is a large glycoprotein and functions as a matrix for thyroid hormone synthesis. TG gene mutations give rise to goitrous congenital hypothyroidism (CH) with considerable phenotype variation. Objectives: The aim of the study was to report the genetic screening of 15 patients with CH due to TG gene mutations and to perform functional analysis of the p. A2215D mutation. Design: Clinical evaluation and DNA sequencing of the TG gene were performed in all patients. TG expression was analyzed in the goitrous tissue of one patient. Human cells were transfected with expression vectors containing mutated and wild-type human TG cDNA. Results: All patients had an absent rise of serum TG after stimulation with recombinant human TSH. Sequence analysis revealed three previously described mutations (p. A2215D, p. R277X, and g. IVS30 + 1G > T), and two novel mutations (p. Q2142X and g. IVS46-1G > A). Two known (g. IVS30 + 1G/p. A2215D and p. A2215D/p. R277X) and one novel (p. R277X/g. IVS46-1G > A) compound heterozygous constellations were also identified. Functional analysis indicated deficiency in TG synthesis, reduction of TG secretion, and retention of the mutant TG within the cell, leading to an endoplasmic reticulum storage disease, whereas small amounts of mutant TG were still secreted within the cell system. Conclusion: All studied patients were either homozygous or heterozygous for TG gene mutations. Two novel mutations have been detected, and we show that TG mutation p. A2215D promotes the retention of TG within the endoplasmic reticulum and reduces TG synthesis and secretion, causing mild hypothyroidism. In the presence of sufficient iodine supply, some patients with TG mutations are able to compensate the impaired hormonogenesis and generate thyroid hormone. (J Clin Endocrinol Metab 94: 2938-2944, 2009)
Resumo:
Background: The antiatherogenic functions of high density lipoprotein (HDL-C) include its role in reverse cholesterol transport, but to what extent the concentration of HDL-C interferes with the whole-body cholesterol metabolism is unknown. Therefore, we measured markers of body cholesterol synthesis (desmosterol and lathosterol) and of intestinal cholesterol absorption (campesterol and beta-sitosterol) in healthy subjects that differ according to their plasma HDL-C concentrations. Methods: Healthy participants presented either low HDL-C (<40 mg/dl, n = 33,17 male and 16 female) or high HDL-C (>60 mg/dl, n = 33, 17 male and 16 female), BMI <30 kg/m(2), were paired according to age and gender, without secondary factors that might interfere with their plasma lipid concentrations. Plasma concentrations of non-cholesterol sterols were measured by the combined GC-MS analysis. Results: Plasma desmosterol did not differ between the two groups; however, as compared with the high HDL-C participants, the low HDL-C participants presented higher concentration of lathosterol and lower concentration of the intestinal cholesterol absorption markers campesterol and beta-sitosterol. Conclusion: Plasma concentrations of HDL, and not the activities of LCAT and CETP that regulate the reverse cholesterol transport system, correlate with plasma sterol markers of intestinal cholesterol absorption directly, and of cholesterol synthesis reciprocally. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Sepsis remains a major cause of morbidity and mortality mainly because of sepsis-induced multiple organ dysfunction. In contrast to preclinical studies, most clinical trials of promising new treatment strategies for sepsis have failed to demonstrate efficacy. Although many reasons could account for this discrepancy, the misinterpretation of preclinical data obtained from experimental studies and especially the use of animal models that do not adequately mimic human sepsis may have been contributing factors. In this review, the potentials and limitations of various animal models of sepsis are discussed to clarify to which extent these findings are relevant to human sepsis. Such models include intravascular infusion of endotoxin or live bacteria, bacterial peritonitis, cecal ligation and perforation, soft tissue infection, pneumonia or meningitis models using different animal species including rats, mice, rabbits, dogs, pigs, sheep, and nonhuman primates. Despite several limitations, animal models remain essential in the development of all new therapies for sepsis and septic shock because they provide fundamental information about the pharmacokinetics, toxicity, and mechanism of drug action that cannot be replaced by other methods. New therapeutic agents should be studied in infection models, even after the initiation of the septic process. Furthermore, debility conditions need to be reproduced to avoid the exclusive use of healthy animals, which often do not represent the human septic patient.
Resumo:
Dengue has emerged as a frequent problem in international travelers. The risk depends on destination, duration, and season of travel. However, data to quantify the true risk for travelers to acquire dengue are lacking. We used mathematical models to estimate the risk of nonimmune persons to acquire dengue when traveling to Singapore. From the force of infection, we calculated the risk of dengue dependent on duration of stay and season of arrival. Our data highlight that the risk for nonimmune travelers to acquire dengue in Singapore is substantial but varies greatly with seasons and epidemic cycles. For instance, for a traveler who stays in Singapore for 1 week during the high dengue season in 2005, the risk of acquiring dengue was 0.17%, but it was only 0.00423% during the low season in a nonepidemic year such as 2002. Risk estimates based on mathematical modeling will help the travel medicine provider give better evidence-based advice for travelers to dengue endemic countries.
Resumo:
Levels of sucrose and total fructool igosaccha rides (FOS) were quantified in different phases of banana `Prata` ripening during storage at ambient (similar to 19 degrees C) and low (similar to 10 degrees C) temperature. Total FOS levels were detected in the first days after harvest, whereas 1-kestose remained undetectable until the sucrose levels reached approximately 200 mg/g (dry weight) in both groups. Sucrose levels increased slowly but constantly at low temperature, but they elevated rapidly when the temperature was raised to 19 degrees C. Total FOS and sucrose levels were higher in bananas stored at low temperature than in the control group. In both samples, total FOS levels were higher than those of 1-kestose. The carbohydrate profiles obtained by HPLC and TLC suggest the presence of neokestose, 6-kestose, and bifurcose. The enzymes putatively involved in banana fructosyltransferase activity were also evaluated. Results obtained indicate that the banana enzyme responsible for the synthesis of FOS by transfructosylation is an invertase rather than a sucrose-sucrosyl transferase-like enzyme.
Resumo:
Background and objective: Tuberculosis (TB) and cancer are two of the main causes of pleural effusions which frequently share similar clinical features and pleural fluid profiles. This study aimed to identify diagnostic models based on clinical and laboratory variables to differentiate tuberculous from malignant pleural effusions. Methods: A retrospective study of 403 patients (200 with TB; 203 with cancer) was undertaken. Univariate analysis was used to select the clinical variables relevant to the models composition. Variables beta coefficients were used to define a numerical score which presented a practical use. The performances of the most efficient models were tested in a sample of pleural exudates (64 new cases). Results: Two models are proposed for the diagnosis of effusions associated with each disease. For TB: (i) adenosine deaminase (ADA), globulins and the absence of malignant cells in the pleural fluid; and (ii) ADA, globulins and fluid appearance. For cancer: (i) patient age, fluid appearance, macrophage percentage and presence of atypical cells in the pleural fluid; and (ii) as for (i) excluding atypical cells. Application of the models to the 64 pleural effusions showed accuracy higher than 85% for all models. Conclusions: The proposed models were effective in suggesting pleural tuberculosis or cancer.
Resumo:
The pathogenic mechanisms of Leptospira interrogans, the causal agent of leptospirosis, remain largely unknown. This is mainly due to the lack of tools for genetically manipulating pathogenic Leptospira species. Thus, homologous recombination between introduced DNA and the corresponding chromosomal locus has never been demonstrated for this pathogen. Leptospiral immunoglobulin-like repeat (Lig) proteins were previously identified as putative Leptospira virulence factors. In this study, a ligB mutant was constructed by allelic exchange in L. interrogans; in this mutant a spectinomycin resistance (Spc(r)) gene replaced a portion of the ligB coding sequence. Gene disruption was confirmed by PCR, immunoblot analysis, and immunofluorescence studies. The ligB mutant did not show decrease virulence compared to the wild-type strain in the hamster model of leptospirosis. In addition, inoculation of rats with the ligB mutant induced persistent colonization of the kidneys. Finally, LigB was not required to mediate bacterial adherence to cultured cells. Taken together, our data provide the first evidence of site-directed homologous recombination in pathogenic Leptospira species. Furthermore, our data suggest that LigB does not play a major role in dissemination of the pathogen in the host and in the development of acute disease manifestations or persistent renal colonization.
Resumo:
Excessive free-radical production due to various bacterial components released during bacterial infection has been linked to cell death and tissue injury. Peroxynitrite is a highly reactive oxidant produced by the combination of nitric oxide (NO) and superoxide anion, which has been implicated in cell death and tissue injury in various forms of critical illness. Pharmacological decomposition of peroxynitrite may represent a potential therapeutic approach in diseases associated with the overproduction of NO and superoxide. In the present study, we tested the effect of a potent peroxynitrite decomposition catalyst in murine models of endotoxemia and sepsis. Mice were injected i.p. with LPS 40 mg/kg with or without FP15 [Fe(III) tetrakis-2-(N-triethylene glycol monomethyl ether) pyridyl porphyrin] (0.1, 0.3, 1, 3, or 10 mg/kg per hour). Mice were killed 12 h later, followed by the harvesting of samples from the lung, liver, and gut for malondialdehyde and myeloperoxidase measurements. In other subsets of animals, blood samples were obtained by cardiac puncture at 1.5, 4, and 8 h after LPS administration for cytokine (TNF-alpha, IL-1 beta, and IL-10), nitrite/nitrate, alanine aminotransferase, and blood urea nitrogen measurements. Endotoxemic animals showed an increase in survival from 25% to 80% at the FP15 doses of 0.3 and 1 mg/kg per hour. The same dose of FP15 had no effect on plasma levels of nitrite/nitrate. There was a reduction in liver and lung malondialdehyde in the endotoxemic animals pretreated with FP15, as well as in hepatic myeloperoxidase and biochemical markers of liver and kidney damage (alanine aminotransferase and blood urea nitrogen). In a bacterial model of sepsis induced by cecal ligation and puncture, FP15 treatment (0.3 mg/kg per day) significantly protected against mortality. The current data support the view that peroxynitrite is a critical factor mediating liver, gut, and lung injury in endotoxemia and septic shock: its pharmacological neutralization may be of therapeutic benefit.
Resumo:
The adenovirus type 5 (Ad5)-based vaccine developed by Merck failed to either prevent HIV-1 infection or suppress viral load in subsequently infected subjects in the STEP human Phase 2b efficacy trial. Analogous vaccines had previously also failed in the simian immunodeficiency virus (SIV) challenge-rhesus macaque model. In contrast, vaccine protection studies that used challenge with a chimeric simian-human immunodeficiency virus (SHIV89.6P) in macaques did not predict the human trial results. Ad5 vector -based vaccines did not protect macaques from infection after SHIV89.6P challenge but did cause a substantial reduction in viral load and a preservation of CD4(+) T cell counts after infection, findings that were not reproduced in the human trials. Although the SIV challenge model is incompletely validated, we propose that its expanded use can help facilitate the prioritization of candidate HIV-1 vaccines, ensuring that resources are focused on the most promising candidates. Vaccine designers must now develop T cell vaccine strategies that reduce viral load after heterologous challenge.
Resumo:
In this Letter we study the process of gluon fusion into a pair of Higgs bosons in a model with one universal extra dimension. We find that the contributions from the extra top quark Kaluza-Klem excitations lead to a Higgs pair production cross section at the LHC that can be significantly altered compared to the Standard Model value for small values of the compactification scale. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Objectives: Selective anticancer cell activity for both cell-penetrating and cationic antimicrobial peptides has previously been reported. As crotamine possesses activities similar to both of these, this study investigates crotamine`s anticancer toxicity in vitro and in vivo. Research design and methods: In vitro cancer cell viability was evaluated after treatment with 1 and 5 mu g/ml of crotamine. In vivo crotamine cytotoxic effects in C57Bl/6J mice bearing B16-F10 primary cutaneous melanoma were tested, with two groups each containing 35 mice. The crotamine-treated group received 1 mu g/day of crotamine per animal, subcutaneously which was well tolerated; the untreated group received a placebo. Results: Crotamine at 5 mu g/ml was lethal to B16-F10, Mia PaCa-2 and SK-Mel-28 cells and inoffensive to normal cells. In vivo crotamine treatment over 21 days significantly delayed tumor implantation, inhibited tumor growth and prolonged the lifespan of the mice. Mice in the crotamine-treated group survived at significantly higher rates (n = 30/35) than those in the untreated group (n = 7/35) (significance calculated with the Kaplan-Meier estimator). The average tumor weight in the untreated group was 4.60 g but was only about 0.27 g in the crotamine-treated mice, if detectable. Conclusions: These data warrant further exploration of crotamine as a tumor inhibition compound.
Resumo:
A new gold(I) complex with 2-mercaptothiazoline (MTZ) with the coordination formula [AuCN(C(3)H(5)NS(2))] was synthesized and characterized by chemical and spectroscopic measurements, OFT studies and biological assays. Infrared (IR) and (1)H, (13)C and (15)N nuclear magnetic resonance (NMR) spectroscopic measurements indicate coordination of the ligand to gold(I) through the nitrogen atom. Studies based on OFT confirmed nitrogen coordination to gold(I) as a minimum of the potential energy surface with calculations of the hessians showing no imaginary frequencies. Thermal decomposition starts at temperatures near 160 degrees C, leading to the formation of Au as the final residue at 1000 degrees C. The gold(I) complex with 2-mercaptothiazoline (Au-MTZ) is soluble in dimethyl sulfoxide (DMSO), and is insoluble in water, methanol, ethanol, acetonitrile and hexane. The antibacterial activities of the Au-MTZ complex were evaluated by an antibiogram assay using the disc diffusion method. The compound showed an effective antibacterial activity against Staphylococcus aureus (Gram-positive) and Escherichia coli and Pseudomonas aeruginosa (Gram-negative) bacterial cells. Biological analysis for evaluation of the cytotoxic effect of the Au-MTZ complex was performed using HeLa cells derived from human cervical adenocarcinoma. The complex presented a potent cytotoxic activity, inducing 85% of cell death at a concentration of 2.0 mu mol L(-1). (C) 2011 Elsevier Ltd. All rights reserved.