202 resultados para Sun: oscillations
Resumo:
The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Bees generate thoracic vibrations with their indirect flight muscles in various behavioural contexts. The main frequency component of non-flight vibrations, during which the wings are usually folded over the abdomen, is higher than that of thoracic vibrations that drive the wing movements for flight. So far, this has been concluded from an increase in natural frequency of the oscillating system in association with the wing adduction. In the present study, we measured the thoracic oscillations in stingless bees during stationary flight and during two types of non-flight behaviour, annoyance buzzing and forager communication, using laser vibrometry. As expected, the flight vibrations met all tested assumptions for resonant oscillations: slow build-up and decay of amplitude; increased frequency following reduction of the inertial load; and decreased frequency following an increase of the mass of the oscillating system. Resonances, however, do not play a significant role in the generation of non-flight vibrations. The strong decrease in main frequency at the end of the pulses indicates that these were driven at a frequency higher than the natural frequency of the system. Despite significant differences regarding the main frequency components and their oscillation amplitudes, the mechanism of generation is apparently similar in annoyance buzzing and forager vibrations. Both types of non-flight vibration induced oscillations of the wings and the legs in a similar way. Since these body parts transform thoracic oscillations into airborne sounds and substrate vibrations, annoyance buzzing can also be used to study mechanisms of signal generation and transmission potentially relevant in forager communication under controlled conditions.
Resumo:
In stingless bees, recruitment of hive bees to food sources involves thoracic vibrations by foragers during trophallaxis. The temporal pattern of these vibrations correlates with the sugar concentration of the collected food. One possible pathway for transfering such information to nestmates is through airborne sound. In the present study, we investigated the transformation of thoracic vibrations into air particle velocity, sound pressure, and jet airflows in the stingless bee Melipona scutellaris. Whereas particle velocity and sound pressure were found all around and above vibrating individuals, there was no evidence for a jet airflow as with honey bees. The largest particle velocities were measured 5 mm above the wings (16.0 +/- 4.8 mm s(-1)). Around a vibrating individual, we found maximum particle velocities of 8.6 +/- 3.0 mm s(-1) (horizontal particle velocity) in front of the bee`s head and of 6.0 +/- 2.1 mm s(-1) (vertical particle velocity) behind its wings. Wing oscillations, which are mainly responsible for air particle movements in honey bees, significantly contributed to vertically oriented particle oscillations only close to the abdomen in M. scutellaris(distances <= 5 mm). Almost 80% of the hive bees attending trophallactic food transfers stayed within a range of 5 mm from the vibrating foragers. It remains to be shown, however, whether air particle velocity alone is strong enough to be detected by Johnston`s organ of the bee antenna. Taking the physiological properties of the honey bee`s Johnston`s organ as the reference, M. scutellaris hive bees are able to detect the forager vibrations through particle movements at distances of up to 2 cm.
Resumo:
Background: Dobutamine is the agent of choice for increasing cardiac output during myocardial depression in humans with septic shock. Studies have shown that beta-adrenoceptor agonists influence nitric oxide generation, probably by modulating cyclic adenosine monophosphate. We investigated the effects of dobutamine on the systemic and luminal gut release of nitric oxide during endotoxic shock in rabbits. Materials/Methods: Twenty anesthetized and ventilated New Zealand rabbits received placebo or intravenous lipopolysaccharide with or without dobutamine (5 mu g/kg/min). Ultrasonic flow probes placed around the superior mesenteric artery and the abdominal aorta continously estimated the flow. A segment from the ileum was isolated and perfused, and scrum nitrate/nitrite levels were measured in the perfusate solution and the serum every hour. Results: The mean arterial pressure decreased with statistical significance in the lipopolysaccharide group but not in the lipopolysaccharide/dobutamine group. The abdominal aortic flow decreased statistically significantly after lipopolysaccharide administration in both groups but recovered to base-line in the lipopolysaccharide/dobutamine group. The flow in the superior mesenteric artery was statistically significantly higher in the lipopolysaccharide/dobutamine group than in the lipopolysaccharide group at 2 hours. The serum nitrate/nitrite levels were higher in the lipopolysaccharide group and lower in the lipopolysaccharide/dobutamine group than those in the control group. The gut luminal perfusate serum nitrate/nitric level was higher in the lipopolysaccharide group than in the lipopolysaccharide/dobutamine group. Conclusions: Dobutamine can decrease total and intestinal nitric oxide production in vivo. Those effects seem to be inversely proportional to the changes in blood flow.
Resumo:
Background: UV radiation is the major environmental factor related to development of cutaneous melanoma. Besides sun exposure and the influence of latitude, some host characteristics such as skin phototype and hair and eye color are also risk factors for melanoma. Polymorphisms in DNA repair genes could be good candidates for susceptibility genes, mainly in geographical regions exposed to high solar radiation. Objective: Evaluate the role of host characteristic.; and DNA repair polymorphism in melanoma risk in Brazil. Methods: We carried out a hospital-based case-control study in Brazil to evaluate the contribution of host factors and polymorphisms in DNA repair to melanoma risk. A total of 412 patients (202 with melanoma and 210 controls) were analyzed regarding host characteristics for melanoma risk as well as for 11 polymorphisms in DNA repair genes. Results: We found an association of host characteristics with melanoma development, such as eye and hair color, fair skin, history of pigmented lesions removed, sunburns in childhood and adolescence, and also European ancestry. Regarding DNA repair gene polymorphisms, we found protection for the XPG 1104 His/His genotype (OR 0.32; 95% CI 0.13-0.75), and increased risk for three polymorphisms in the XPC gene (PAT+; IV-6A and 939Gln), which represent a haplotype for XPC. Melanoma risk was higher in individuals carrying the complete XPC haplotype than each individual polymorphism (OR 3.64; 95% CI 1.77-7.48). Conclusions: Our data indicate that the host factors European ancestry and XPC polymorphisms contributed to melanoma risk in a region exposed to high sun radiation. (C) 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Neural phase signaling has gained attention as a putative coding mechanism through which the brain binds the activity of neurons across distributed brain areas to generate thoughts, percepts, and behaviors. Neural phase signaling has been shown to play a role in various cognitive processes, and it has been suggested that altered phase signaling may play a role in mediating the cognitive deficits observed across neuropsychiatric illness. Here, we investigated neural phase signaling in two mouse models of cognitive dysfunction: mice with genetically induced hyperdopaminergia [dopamine transporter knock-out (DAT-KO) mice] and mice with genetically induced NMDA receptor hypofunction [NMDA receptor subunit-1 knockdown (NR1-KD) mice]. Cognitive function in these mice was assessed using a radial-arm maze task, and local field potentials were recorded from dorsal hippocampus and prefrontal cortex as DAT-KO mice, NR1-KD mice, and their littermate controls engaged in behavioral exploration. Our results demonstrate that both DAT-KO and NR1-KD mice display deficits in spatial cognitive performance. Moreover, we show that persistent hyperdopaminergia alters interstructural phase signaling, whereas NMDA receptor hypofunction alters interstructural and intrastructural phase signaling. These results demonstrate that dopamine and NMDA receptor dependent glutamate signaling play a critical role in coordinating neural phase signaling, and encourage further studies to investigate the role that deficits in phase signaling play in mediating cognitive dysfunction.
Resumo:
Background: Lupus erythematosus (LE) is a chronic inflammatory disease. Presence of type 1 cytokines in cutaneous discoid lesions suggests that they may be critical for induction, development and maintenance of these manifestations. Type 2 cytokines in combination with local interferon gamma (INF-gamma) are thought to be related to the physiopathology of cutaneous LE. Cytokines profiles are still unknown in oral LE lesions. Materials and Methods: Expression of Th1 and Th2 cytokines (including IL-4, IL-5, IL-6, IL-10, IL-12, tumor necrosis factor alpha (TNF-alpha) and INF-gamma was investigated and compared in 29 biopsies of intra-oral (sun-protected) and labial lesions (sun-exposed) of LE using immunohistochemistry. Results: Inflammatory infiltrate of LE lesions was strongly positive for IFN-gamma (97%) and TNF-alpha (90%), both Th1 type cytokines. Interleukin-10, a Th2 cytokine was also strongly expressed. Other cytokines were only mildly positive. Cytokines patterns were similar in intra-oral (sun-covered) and labial (sun-exposed) LE lesions. Conclusions: Oral LE lesions are associated with both type 1 and type 2 cytokines, characterized by stronger expression of INF-gamma, TNF-alpha and IL-10. These findings suggest that although ultraviolet (UV) light is involved in the induction of LE lesions, mechanisms of lesions formation may be similar in sun-exposed as well as sun-covered areas.
Resumo:
The present study has investigated in conscious rats the influence of the duration of physical training sessions on cardiac autonomic adaptations by using different approaches; 1) double blockade with methylatropine and propranolol; 2) the baroreflex sensitivity evaluated by alternating bolus injections of phenylephrine and sodium nitroprusside; and 3) the autonomic modulation of HRV in the frequency domain by means of spectral analysis. The animals were divided into four groups: one sedentary group and three training groups submitted to physical exercise (swimming) for 15, 30, and 60 min a day during 10 weeks. All training groups showed similar reduction in intrinsic heart rate (IHR) after double blockade with methylatropine and propranolol. However, only 30-min and 60-min physical training presented an increase in the vagal autonomic component for determination of basal heart rate (HR) in relation to group sedentary. Spectral analysis of HR showed that the 30-min and 60-min physical training presented the reduction in low-frequency oscillations (LF = 0.20-0.75 Hz) and the increase in high-frequency oscillations (HF = 0.75-2.5 Hz) in normalized units. These both groups only showed an increased baroreflex sensitivity to tachycardiac responses in relation to group sedentary, however when compared, the physical training of 30-min exhibited a greater gain. In conclusion, cardiac autonomic adaptations, characterised by the increased predominance of the vagal autonomic component, were not proportional to the duration of daily physical training sessions. In fact, 30-minute training sessions provided similar cardiac autonomic adaptations, or even more enhanced ones, as in the case of baroreflex sensitivity compared to 60-minute training sessions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
It is well known that regular physical exercise alter cardiac function and autonomic modulation of heart rate variability (HRV). The paraventricular nucleus of hypothalamus (PVN) is an important site of integration for autonomic and cardiovascular responses, where nitric oxide (NO) plays an important role. The aim of our study was to evaluate the cardiovascular parameters and autonomic modulation by means of spectral analysis after nitric oxide synthase (NOS) inhibition in the PVN in conscious sedentary (S) or swimming trained (ST) rats. After swimming training protocol, adult male Wistar rats, instrumented with guide cannulas to PVN and femoral artery and vein catheters were submitted to mean arterial pressure (MAP) and heart rate (HR) recording. At baseline, the physical training induced a resting bradycardia (S: 374 +/- 5, ST: 346 +/- 1 bpm) and promoted adaptations in HRV characterized by an increase in high-frequency oscillations (HF; 26.43 +/- 6.91 to 88.96 +/- 244) and a decrease in low-frequency oscillations (LF; 73.57 +/- 6.91 to 11.04 +/- 2.44) in normalized units. The microinjection of N(omega)-nitro-L-arginine methyl ester (L-NAME) in the PVN of sedentary and trained rats promoted increase in MAP and HR. L-NAME in the PVN did not significantly alter the spectral parameters of HRV of sedentary animals, however in the trained rats increased LF oscillations (11.04 +/- 2.44 to 27.62 +/- 6.97) and decreased HF oscillations (88.96 +/- 2.44 to 72.38 +/- 6.97) in normalized units compared with baseline. Our results suggest that NO in the PVN may collaborate to cardiac autonomic modulation after exercise training. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Dysfunction in the hypothalamic GABAergic system has been implicated in panic syndrome in humans. Furthermore, several studies have implicated the hypothalamus in the elaboration of pain modulation. Panic-prone states are able to be experimentally induced in laboratory animals to study this phenomenon. The aim of the present work was to investigate the involvement of medial hypothalamic nuclei in the organization of panic-like behaviour and the innate fear-induced oscillations of nociceptive thresholds. The blockade of GABA(A) receptors in the neuronal substrates of the ventromedial. or dorsomedial hypothalamus was followed by elaborated defensive panic-like reactions. Moreover, innate fear-induced antinociception was consistently elicited after the escape behaviour. The escape responses organized by the dorsomedial and ventromedial hypothalamic nuclei were characteristically more elaborated, and a remarkable exploratory behaviour was recorded during GABA(A) receptor blockade in the medial hypothalamus. The motor characteristic of the elaborated defensive escape behaviour and the patterns of defensive alertness and defensive immobility induced by microinjection of the bicuculline either into the dorsomedial. or into the ventromedial hypothalamus were very similar. This was followed by the same pattern of innate fear-induced antinociceptive response that lasted approximately 40 min after the elaborated defensive escape reaction in both cases. These findings suggest that dysfunction of the GABA-mediated neuronal system in the medial hypothalamus causes panic-like responses in laboratory animals, and that the elaborated escape behaviour organized in both dorsomedial and ventromedial hypothalamic nuclei are followed by significant innate-fear-induced antinociception. Our findings indicate that the GABA(A) receptor of dorsomedial and ventromedial hypothalamic nuclei are critically involved in the modulation of panic-like behaviour. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Introduction: Among patients with congestive heart failure (CHF) both obstructive and central sleep apnea (SA) are associated with increased sympathetic activity. However, the day-night pattern of cardiac autonomic nervous system modulation in CHF patients with and without sleep apnea is unknown. Material and methods: Twenty-five CHF patients underwent polysomnography with simultaneous beat-to-beat blood pressure (Portapres), respiration and electrocardiogram monitoring. Patients were divided according to the presence (SA, n=17) and absence of SA (NoSA, n=8). Power spectral analyses of heart rate variability (HRV) and spontaneous baroreflex sensitivity (BRS) were determined in periods with stable breathing while awake at 6 AM, 10 AM, 10 PM, as well as during stage 2 sleep. In addition, muscle sympathetic nerve activity (MSNA) was evaluated at 10 AM. Results: RR variance, low-frequency (LF), high-frequency (HF) powers of HRV, and BRS were significantly lower in patients with SA compared with NoSA in all periods. HF power, a marker of vagal activity, increased during sleep in patients with NoSA but in contrast did not change across the 24-hour period in patients with SA. MSNA was significantly higher in patients with SA compared with NoSA. RR variance, LF and HF powers correlated inversely with simultaneous MSNA (r=-0.64, -0.61, and -0.61 respectively; P < 0.01). Conclusions: Patients with CHF and SA present a reduced and blunted cardiac autonomic modulation across the 24-hour period. These findings may help to explain the increased cardiovascular risk in patients with CHF and SA. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This study evaluated the role of arterial baroreceptors in arterial pressure (AP) and pulse interval (PI) regulation in conscious C57BL mice. Male animals, implanted with catheters in a femoral artery and a jugular vein, were submitted to sino-aortic (SAD), aortic (Ao-X) or carotid sinus denervation (Ca-X), 5 daysprior to the experiments. After basal recording of AP, the lack of reflex bradycardia elicited by administration of phenylephrine was used to confirm the efficacy of SAD, and cardiac autonomic blockade with methylatropine and propranolol was performed. The AP and PI variability were calculated in the time and frequency domains (spectral analysis/fast Fourier transform) with the spectra quantified in low-(LF; 0.25-1Hz) and high-frequency bands (HF; 1-5Hz). Basal AP and AP variability were higher after SAD, Ao-X or Ca-X than in intact mice. Pulse interval was similar among the groups, whereas PI variability was lower after SAD. Atropine elicited a slight tachycardia in control mice but did not change PI after total or partial denervation. The bradycardia caused by propranolol was higher after SAD, Ao-X or Ca-X compared with intact mice. The increase in the variability of AP was accompanied by a marked increase in the LF and HF power of the AP spectra after baroreceptor denervation. The LF and HF power of the PI were reduced by SAD and by Ao-X or Ca-X. Therefore, both sino-aortic and partial baroreceptor denervation in mice elicits hypertension and a remarkable increase in AP variability and cardiac sympathetic tonus. Spectral analysis showed an important contribution of the baroreflex in the power of LF oscillations of the PI spectra. Both sets of baroreceptors seem to be equally important in the autonomic regulation of the cardiovascular system in mice.
Resumo:
1. The present study evaluated changes in autonomic control of the cardiovascular system in conscious rats following blockade of endothelin (ET) receptors with bosentan. 2. Rats were treated with bosentan or vehicle (5% gum arabic) for 7 days by gavage. 3. Baseline heart rate (HR) was higher in the bosentan-treated group compared with the control group (418 +/- 5 vs 357 +/- 4 b.p.m., respectively; P < 0.001). This baseline tachycardia was associated with a lower baroreflex sensitivity of the bradycardiac and tachycardiac responses in the bosentan-treated group compared with the control group. Sequential blockade of the parasympathetic and sympathetic autonomic nervous system with methylatropine and propranolol showed a higher intrinsic HR in the bosentan-treated group compared with the control group (411 +/- 5 vs 381 +/- 4 b.p.m., respectively; P < 0.05). This was accompanied by a higher cardiac sympathetic tone (31 +/- 1 vs 13 +/- 1%, respectively; P < 0.01) and a lower vagal parasympathetic tone (69 +/- 2 vs 87 +/- 2%, respectively; P < 0.01) in the bosentan-treated group compared with the control group. Variance and high-frequency oscillations of pulse interval (PI) variability in absolute and normalized units were lower in the bosentan-treated group than in the control group. Conversely, low-frequency (LF) oscillations of PI variability in absolute and normalized units, as well as variance and LF oscillations of systolic arterial pressure variability, were greater in the bosentan-treated group than the control group. 4. Overall, the data indicate an increased cardiac sympathetic drive, as well as lower vagal parasympathetic activity and baroreflex sensitivity, in conscious rats after chronic blockade of ET receptors with bosentan.
Resumo:
Background Porphyria cutanea tarda (PCT) is a metabolic disease characterized by vesicles and blisters in sun-exposed areas and scleroderma-like lesions in sun-exposed and non-sun-exposed areas. Mast cells participate in the pathogenesis of bullous diseases and diseases that show sclerosis, including PCT. Moreover, transforming growth factor-beta (TGF-beta) is the main cytokine in the development of tissue sclerosis. The correlation of mast cells and TGF-beta with the lesions of PCT has not been examined, however. The possible role of mast cells and TGF-beta (and the relationship between them) in the development of PCT lesions is discussed. Methods To quantify mast cells and cells expressing TGF-beta in skin samples from patients with PCT and controls, immunohistochemical studies were performed in tissue sections allied to morphometric analyses. Results The numbers of mast cells and cells expressing TGF-beta per square millimiter were increased in the PCT group relative to controls, and there was a direct and significant correlation between the mast cell number and cells expressing TGF-beta in PCT. Conclusions The results suggest that the increased number of mast cells and of cells expressing TGF-beta, as well as their direct correlation, may contribute to the pathogenesis of the skin lesions in PCT.
Resumo:
Dietary patterns have been related to health outcomes and morbi-mortality. Mediterranean diet indexes are correlated With adequate nutrient intake. The objective of the present study was to analyse the adequacy of nutrient intake of a posteriori defined Mediterranean (MDP) and Western (WDP) diet patterns in the Seguimiento Universidad de Navarra (SUN) cohort. A sample of 17 197 subjects participated in the study. Participants completed I 136-item validated semi-quantitative FFQ. Principal component analysis was used to define dietary patterns. Individuals were classified according to quintiles of adherence based on dietary pattern scores. Non-dietary variables, such as smoking and physical activity habits, were also taken into account. The probability approach was used to assess nutrient intake adequacy of certain vitamins (vitamins B(12), B(6), B(3), B(2), B(1), A, C, D and E) and minerals (Na, Zn, iodine, Se, folic acid, P, Mg, K, Fe and Ca). Logistic regression analysis was used to assess the adequacy of nutrient intake according to adherence to dietary patterns. WDP and MDP were defined. A higher quintile of adherence to an MDP was associated to I lower prevalence of inadequacy for the intake of Zn, iodine, vitamin E, Mg, Fe, vitamin B I, vitamin A, Se, vitamin C and folic acid. The adjusted OR for not reaching at least six (or at leas( ten) nutrient recommendations were 0.09 (95% Cl: 0.07, 0.11) (and 0.02 (95% Cl: 0.00, 0.16)) for the upper quintile of MDP and 4.4 (95% Cl: 3.6, 5.5) and 2.5 (95 % Cl: 1.1, 5.4) for the WDP. The MDP was associated to a better profile of nutrient intake.