252 resultados para Physics, Atomic, Molecular


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cooperative spontaneous emission of a single photon from a cloud of N atoms modifies substantially the radiation pressure exerted by a far-detuned laser beam exciting the atoms. On one hand, the force induced by photon absorption depends on the collective decay rate of the excited atomic state. On the other hand, directional spontaneous emission counteracts the recoil induced by the absorption. We derive an analytical expression for the radiation pressure in steady-state. For a smooth extended atomic distribution we show that the radiation pressure depends on the atom number via cooperative scattering and that, for certain atom numbers, it can be suppressed or enhanced. Cooperative scattering of light by extended atomic clouds can become important in the presence of quasi-resonant light and could be addressed in many cold atoms experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Explicitly orbital-dependent approximations to the exchange-correlation energy functional of density functional theory typically not only depend on the single-particle Kohn-Sham orbitals but also on their occupation numbers in the ground-state Slater determinant. The variational calculation of the corresponding exchange-correlation potentials with the optimized effective potential (OEP) method therefore also requires a variation of the occupation numbers with respect to a variation in the effective single-particle potential, which is usually not taken into account. Here it is shown under which circumstances this procedure is justified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Lieb-Oxford bound is a constraint upon approximate exchange-correlation functionals. We explore a nonempirical tightening of that bound in both universal and electron number-dependent form. The test functional is PBE. Regarding both atomization energies (slightly worsened) and bond lengths (slightly improved), we find the PBE functional to be remarkably insensitive to the value of the Lieb-Oxford bound. This both rationalizes the use of the original Lieb-Oxford constant in PBE and suggests that enhancement factors more sensitive to sharpened constraints await discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Universal properties of the Coulomb interaction energy apply to all many-electron systems. Bounds on the exchange-correlation energy, in particular, are important for the construction of improved density functionals. Here we investigate one such universal property-the Lieb-Oxford lower bound-for ionic and molecular systems. In recent work [J Chem Phys 127, 054106 (2007)], we observed that for atoms and electron liquids this bound may be substantially tightened. Calculations for a few ions and molecules suggested the same tendency, but were not conclusive due to the small number of systems considered. Here we extend that analysis to many different families of ions and molecules, and find that for these, too, the bound can be empirically tightened by a similar margin as for atoms and electron liquids. Tightening the Lieb-Oxford bound will have consequences for the performance of various approximate exchange-correlation functionals. (C) 2008 Wiley Periodicals Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenomenological orbital-polarizition (OP) terms have been repeatedly introduced in the single-particle equations of spin-density-functional theory, in order to improve the description of orbital magnetic moments in systems containing transition metal ions. Here we show that these ad hoc corrections can be interpreted as approximations to the exchange-correlation vector potential A(xc) of current-density functional theory (CDFT). This connection provides additional information on both approaches: phenomenological OP terms are connected to first-principles theory, leading to a rationale for their empirical success and a reassessment of their limitations and the approximations made in their derivation. Conversely, the connection of OP terms with CDFT leads to a set of simple approximations to the CDFT potential A(xc), with a number of desirable features that are absent from electron-gas-based functionals. (C) 2008 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reports a relaxation study in an oriented system containing spin 3/2 nuclei using quantum state tomography (QST). The use of QST allowed evaluating the time evolution of all density matrix elements starting from several initial states. Using an appropriated treatment based on the Redfield theory, the relaxation rate of each density matrix element was measured and the reduced spectral densities that describe the system relaxation were determined. All the experimental data could be well described assuming pure quadrupolar relaxation and reduced spectral densities corresponding to a superposition of slow and fast motions. The data were also analyzed in the context of Quantum Information Processing, where the coherence loss of each qubit of the system was determined using the partial trace operation. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a minor but essential modification to the CODEX 1D-MAS exchange experiment. The new CONTRA method, which requires minor changes of the original sequence only, has advantages over the previously introduced S-CODEX, since it is less sensitive to artefacts caused by finite pulse lengths. The performance of this variant, including the finite pulse effect, was confirmed by SIMPSON calculations and demonstrated on a number of dynamic systems. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unveiling the mechanisms of energy relaxation in biomolecules is key to our understanding of protein stability, allostery, intramolecular signaling, and long-lasting quantum coherence phenomena at ambient temperatures. Yet, the relationship between the pathways of energy transfer and the functional role of the residues involved remains largely unknown. Here, we develop a simulation method of mapping out residues that are highly efficient in relaxing an initially localized excess vibrational energy and perform site-directed mutagenesis functional assays to assess the relevance of these residues to protein function. We use the ligand binding domains of thyroid hormone receptor (TR) subtypes as a test case and find that conserved arginines, which are critical to TR transactivation function, are the most effective heat diffusers across the protein structure. These results suggest a hitherto unsuspected connection between a residue`s ability to mediate intramolecular vibrational energy redistribution and its functional relevance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In magnetic resonance imaging (MRI), either on human or animal studies, the main requirements for radiofrequency (RF) coils are to produce a homogeneous RF field while used as a transmitter coil and to have the best signal-to-noise ratio (SNR) while used as a receiver. Besides, they need to be easily frequency adjustable and have input impedance matching 50 Omega to several different load conditions. New theoretical and practical concepts are presented here for considerable enhancing of RF coil homogeneity for MRI experiments on small animals. To optimize field homogeneity, we have performed simulations using Blot and Savart law varying the coil`s window angle, achieving the optimum one. However, when the coil`s dimensions are the same order of the wave length and according to transmission line theory, differences in electrical length and effects of mutual inductances between adjacent strip conductors decrease both field homogeneity and SNR. The problematic interactions between strip conductors by means of mutual inductance were eliminated by inserting crossings at half electrical length, avoiding distortion on current density, thus eliminating sources of field inhomogeneity. Experimental results show that measured field maps and simulations are in good agreement. The new coil design, dubbed double-crossed saddle described here have field homogeneity and SNR superior than the linearly driven 8-rung birdcage coil. One of our major findings was that the effects of mutual inductance are more significant than differences in electrical length for this frequency and coil dimensions. In vitro images of a primate Cebus paela brain were acquired, confirming double-crossed saddle superiority. (C) 2010 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 37B: 193-201, 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The behaviour of interacting ultracold Rydberg atoms in both constant electric fields and laser fields is important for designing experiments and constructing realistic models of them. In this paper, we briefly review our prior work and present new results on how electric fields affect interacting ultracold Rydberg atoms. Specifically, we address the topics of constant background electric fields on Rydberg atom pair excitation and laser-induced Stark shifts on pair excitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a scheme for quasi-perfect state transfer in a network of dissipative harmonic oscillators. We consider ideal sender and receiver oscillators connected by a chain of nonideal transmitter oscillators coupled by nearest-neighbour resonances. From the algebraic properties of the dynamical quantities describing the evolution of the network state, we derive a criterion, fixing the coupling strengths between all the oscillators, apart from their natural frequencies, enabling perfect state transfer in the particular case of ideal transmitter oscillators. Our criterion provides an easily manipulated formula enabling perfect state transfer in the special case where the network nonidealities are disregarded. We also extend such a criterion to dissipative networks where the fidelity of the transferred state decreases due to the loss mechanisms. To circumvent almost completely the adverse effect of decoherence, we propose a protocol to achieve quasi-perfect state transfer in nonideal networks. By adjusting the common frequency of the sender and the receiver oscillators to be out of resonance with that of the transmitters, we demonstrate that the sender`s state tunnels to the receiver oscillator by virtually exciting the nonideal transmitter chain. This virtual process makes negligible the decay rate associated with the transmitter line at the expense of delaying the time interval for the state transfer process. Apart from our analytical results, numerical computations are presented to illustrate our protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, the mycosporine-like amino acids (MAAs) were isolated from the marine red alga Gracilaria tenuistipitata and analysed by high-resolution accurate-mass sequential mass spectrometry (MSn). In addition to the proposed fragmentation mechanism based on the MSn analysis, it is clearly demonstrated that the elimination of mass 15 is a radical processes taking place at the methoxyl substituent of the double bond. This characteristic loss of a methyl radical was studied by theoretical calculations and the homolytic cleavage of the O-C bond is suggested to be dependent on the bond weakening. The protonation site of the MAAs was indicated by analysis of the Fukui functions and the relative Gibbs energies of the several possible protonated forms. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiconfigurational second-order perturbation theory (CASSCF//CASPT2) and quadruple-zeta ANO-RCC basis sets were employed to investigate the ground and low-lying electronic states of MoB and MoB(+). Spectroscopic constants, potential energy curves, wavefunctions, Mulliken population analyses, and ionization energies are given. The ground state of MoB is of X(6)Pi symmetry (R(e) = 1.968 angstrom, omega(e) = 664 cm(-1), and mu = 2.7 D), giving rise to a Omega = 7/2 ground state after including spin-orbit coupling. For MoB(+), the ground state is computed to be of X(7)Sigma(+) symmetry (R(e) = 2.224 angstrom, omega(e) = 141 cm(-1), and mu = 1.2 D), with an adiabatic ionization energy of 7.19 eV and a vertical one of 7.53 eV. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem 111: 3362-3370, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been increasing interest in the gas-phase reactivity of alkyl nitrates because of their well-known applications as explosives and because of then role in atmospheric and in marine processes This manuscript describes an experimental study by FT-ICR techniques of the gas-phase reactions of OH(-) and F(-) with methyl and ethyl Innate For methyl nitrate, the main reaction channel is found to be an elimination process promoted by abstraction of an a proton from the methyl group. Nucleophilic displacement of nitrate anion through an S(N)2 process at the carbon center Is also found to he an important reaction channel with methyl nitrate In ethyl nitrate, Ruination of NO(3)(-) is greatly enhanced and this is attributed to the ease of an E2-type elimination process promoted by proton abstraction at the beta position of the ethyl group. Theoretical calculations at the MP2/6-311+G(3df,2p)//MP2/6-31+G(d) level of theory ale consistent with the relative importance of the reaction channels and suggest that these reactions proceed through a double well potential The calculations also predict that nucleophilic attack by OH(-) at the nitrogen center (Sn2@N) is energetically the rueful ad pathway but experiments with (18)OH(-) showed no evidence for this channel. Single-point calculations reveal a strong preference for approach to the emboli center and may explain the lack of reactivity at the nitrogen center. Calculations were also carried out or NH(2)(-) and SH(-) to establish the reactivity pattern to provide a better understanding of environmentally relevant nitrate esters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solvatochromic shift of the lowest singlet it pi -> pi* electronic transition in the all-trans, cis-13, cis-11, cis-9, and cis-7 retinal isomers were computed under the influence of water, methanol, and benzene solvents. Excitation energies were calculated in gas phase and in solution. The calculations in solution were performed considering the sequential Monte Carlo (MC) /Quantum Mechanical approach. The MC simulations were performed considering the full retinal isomer molecules and 900 water molecules, 900 methanol, or 400 benzene ones. The OPLS/AA parametrization was chosen for retinal, methanol, and benzene molecules and the SPC model was used for water one. From the MC calculations 100 independent configurations were selected, with 100 solvent molecules in thermodynamical equilibrium at T = 298.15 K. Average point-charges were obtained from those independent configurations for water, methanol, and benzene solvent. TDDFT and CASSCF//CASPT2 methodologies were used to compute the vertical excitation energy of the retinal isomers in different environment. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110: 2076-2087, 2010