227 resultados para Franco-Américains
Resumo:
The fruit of banana undergoes several important physico-chemical changes during ripening. Analysis of gene expression would permit identification of important genes and regulatory elements involved in this process. Therefore, transcript profiling of preclimacteric and climacteric fruit was performed using differential display and Suppression subtractive hybridization. Our analyses resulted in the isolation of 12 differentially expressed cDNAs, which were confirmed by dot-blots and northern blots. Among the sequences identified were sequences homologous to plant aquaporins, adenine nucleotide translocator, immunophilin, legumin-like proteins, deoxyguanosine kinase and omega-3 fatty acid desaturase. Some of these cDNAs correspond to newly isolated genes involved in changes related to the respiratory climacteric, or stress-defense responses. Functional characterization of ripening-associated genes could provide information useful in controlling biochemical pathways that would have an impact on banana quality and shelf life. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This study examined the transcultural robustness of a screening instrument for hypomania, the Hypomania Checklist-32. first revised version(HCL-32 R1) It was carried out in 2606 patients from twelve countries in five geographic regions (Northern, Southern and Eastern Europe, South America and East Asia) In addition, GAMIAN Europe contributed data from its members Exploratory and confirmatory factor analyses were used to examine the transregional stability of the measurement properties of the HCL-32 R 1, including the influence of sex and age as covariates A cross cultures, a two-factor structure was confirmed the first factor (F 1) reflected the more positive aspects of hypomania (being more active, elated, self-confident, and cognitively, enhanced), the second factor (F2) reflected the more negative aspects (being irritable, impulsive, careless. more substance use). The measurement properties of the HCL-32 R1 were largely invariant across cultures Only few items showed transcultural differences in their relation to hypomania as measured by the test F2 was higher among men and in more severe manic syndromes, F1 was highest in North and East Europe and lowest in South America Vie scores decreased slightly with age The frequency of the 32 items showed remarkable similarities across geographic areas, with two exceptions. South Europeans had lower symptom frequencies in general and East Europeans higher rates of substance use These findings support the international applicability of the HCL-32 R1 as a screening instrument for hypomania
Resumo:
Levels of sucrose and total fructool igosaccha rides (FOS) were quantified in different phases of banana `Prata` ripening during storage at ambient (similar to 19 degrees C) and low (similar to 10 degrees C) temperature. Total FOS levels were detected in the first days after harvest, whereas 1-kestose remained undetectable until the sucrose levels reached approximately 200 mg/g (dry weight) in both groups. Sucrose levels increased slowly but constantly at low temperature, but they elevated rapidly when the temperature was raised to 19 degrees C. Total FOS and sucrose levels were higher in bananas stored at low temperature than in the control group. In both samples, total FOS levels were higher than those of 1-kestose. The carbohydrate profiles obtained by HPLC and TLC suggest the presence of neokestose, 6-kestose, and bifurcose. The enzymes putatively involved in banana fructosyltransferase activity were also evaluated. Results obtained indicate that the banana enzyme responsible for the synthesis of FOS by transfructosylation is an invertase rather than a sucrose-sucrosyl transferase-like enzyme.
Resumo:
Pulp softening is one of the most remarkable changes during ripening of papaya (Carica papaya) fruit and it is a major cause for post-harvest losses. Although cell wall catabolism has a major influence on papaya fruit, quality information on the gene products involved in this process is limited. A full-length polygalacturonase cDNA (cpPG) was isolated from papaya pulp and used to study gene expression and enzyme activity during normal and ethylene-induced ripening and after exposure of the fruit to 1-MCP. Northern-blot analysis demonstrated that cpPG transcription was strongly induced during ripening and was highly ethylene-dependent. The accumulation of cpPG transcript was paralleled by enzyme activity, and inversely correlated to the pulp firmness. Preliminary in silica analysis of the cpPG genomic sequence revealed the occurrence of putative regulatory motifs in the promoter region that may help to explain the effects of plant hormones and non-abiotic stresses on papaya fruit firmness. This newly isolated cpPG is an important candidate for functional characterization and manipulation to control the process of pulp softening during papaya ripening. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Papaya (Carica papaya) is a climacteric fruit that undergoes dramatic pulp softening. Fruits sampled at three different conditions (natural ripening or after exposition to ethylene or 1-methylcyclopropene) were used for the isolation of cell wall polymers to find changes in their degradation pattern. Polymers were separated according to their solubility in water, CDTA, and 4 M alkali, and their monosaccharide compositions were determined. Water-soluble polymers were further characterized, and their increased yields in control and ethylene-treated fruit, in contrast to those that were treated with 1-MCP, indicated a strong association between fruit softening and changes in the cell wall water-soluble polysaccharide fraction. The results indicate that the extensive softening in the pulp of ripening papayas is a consequence of solubilization of large molecular mass galacturonans from the pectin fraction of the cell wall. This process seems to be dependent on the levels of ethylene, and it is likely that the releasing of galacturonan chains results from an endo acting polygalacturonase.
Resumo:
Different banana cultivars were used to investigate the influences of starch granule structure and hydrolases on degradation. The highest degrees of starch degradation were observed in dessert bananas during ripening. Scanning electron microscopy images revealed smooth granule surface in the green stage in all cultivars, except for Mysore. The small and round granules were preferentially degraded in all of the cultivars. Terra demonstrated a higher degree of crystallinity and a short amylopectin chain length distribution, resulting in high starch content in the ripe stage. Amylose content and the crystallinity index were more strongly correlated than the distribution of amylopectin branch chain lengths in banana starches. alpha- and beta-amylase activities were found in both forms, soluble in the pulp and associated with the starch granule. Starch-phosphorylase was not found in Mysore. On the basis of the profile of alpha-amylase in vitro digestion and the structural characteristics, it could be concluded that the starch of plantains has an arrangement of granules more resistant to enzymes than the starch of dessert bananas.
Resumo:
Background: Obstructive sleep apnoea-hypopnoea syndrome (OSAHS) is a respiratory disorder with high morbidity and mortality. Continuous positive airway pressure (CPAP) is the most commonly prescribed conservative treatment for adults with OSAHS. CPAP therapy normalises or decreases OSAHS symptoms and can reduce and prevent OSAHS complications. Aims: To evaluate adherence to nasal CPAP treatment and CPAP impact on daytime drowsiness. Method: A sample of 20 patients evaluated for daytime drowsiness using the Epworth sleepiness scale and interviewed for adherence to nasal CPAP use. Results: There was a significant decrease in the level of daytime sleepiness of the patients users of nasal CPAP (p=0.017); patients not using nasal CPAP experienced a decrease without statistical significance (p=0.162). 100% of CPAP users reported benefits and 50% of these reported related discomforts. Conclusions: Patients with OSAHS that use CPAP have a greater reduced level of sleepiness than those who do not use it.
Resumo:
Fondation Philantropique
Resumo:
Papaya is a climacteric fruit that has high amounts of benzylglucosinolates (BG) and benzylisothiocyanates (BITC), but information regarding levels of BG or BITC during fruit development and ripening is limited. Because BG and BITC are compounds of importance from both a nutritional and a crop yield standpoint, the aim of this work was to access data on the distribution and changes of BG and BITC levels during fruit development and ripening. BG and BITC levels were quantified in peel, pulp, and seeds of papaya fruit. Volatile BITC was also verified in the internal cavity of the fruit during ripening. The influence of the ethylene in BG and BITC levels and mirosinase activity was tested by exposing mature green fruits to ethylene and 1-methylcyclopropene (1-MCP). The highest BG levels were detected in seeds, followed by the peel and pulp being decreased in all tissues during fruit development. Similarly, the levels of BITC were much higher in the seeds than the peel and pulp. The levels of BG for control and ethylene-treated fruit were very similar, increasing in the pulp and peel during late ripening but not changing significantly in seeds. On the other hand, fruit exposed to 1-MCP showed a decrease in BG amount in the pulp and accumulation in seed. The treatments did not result in clear differences regarding the amount of BITC in the pulp and peel of the fruit. According to the results, ethylene does not have a clear effect on BITC accumulation in ripening papaya fruit. The fact that BG levels in the pulp did not decrease during ripening, regardless of the treatment employed, and that papaya is consumed mainly as fresh fruit, speaks in favor of this fruit as a good dietary source for glucosinolate and isothiocyanates.
Resumo:
BACKGROUND: Fruit softening is generally attributed to cell wall degradation in the majority of fruits. However, unripe bananas contain a large amount of starch, and different banana cultivars vary in the amount of starch remaining in ripe fruits. Since studies on changes in pulp firmness carried outwith bananas are usually inconclusive, the cell wall carbohydrates and the levels of starch and soluble cell wall monosaccharides from the pulps of three banana cultivars were analysed at different ripening stages. RESULTS: Softening of Nanicao and Mysore bananas seemed to be more closely related to starch levels than to cell wall changes. For the plantain Terra, cell wall polysaccharide solubilisation and starch degradation appeared to be the main contributors. CONCLUSION: Banana softening is a consequence of starch degradation and the accumulation of soluble sugars in a cultivar-dependent manner. However, contributions from cell wall-related changes cannot be disregarded. (C) 2011 Society of Chemical Industry
Resumo:
The starch content of unripe mango Keitt is around 7% (FW), and it is converted to soluble sugars during the ripening of the detached fruit. Despite the importance of starch-to-soluble sugar metabolism for mango quality, little literature is found on this subject and none concerning the physical aspects of starch degradation. This manuscript presents some changes in the physical aspects of the starch granule during ripening, as analyzed by light microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). According to the analysis, unripe Keitt-mango-starch being spherical in shape and measuring around 15,mu m, has A-type X-ray diffraction pattern with a degree of crystallinity around 21% with slight changes after 8 days of ripening. AFM images of the surface of the granules showed ultra microstructures, which are in agreement with a blocklet-based organization of the granules. The AFM-contrast image of growing layers covering the granule showed fibril-like structures, having 20 nm in diameter, transversally connecting the layer to the granule. The appearance of the partially degraded granules and the pattern of degradation were similar to those observed as a result of amylase activity, suggesting a hydrolytic pathway for the degradation of starch from mango cultivar Keitt. These results provide clues to a better understanding of starch degradation in fruits.
Resumo:
During mango ripening, soluble sugars that account for mango sweetening are accumulated through carbon supplied by both photosynthesis and starch degradation. The cultivar Keitt has a characteristic dependence on sugar accumulation during starch degradation, which takes place during ripening, only a few days after detachment from the tree. Most knowledge about starch degradation is based on seeds and leaves currently used as models. However, information about the mango fruit is scarce. This work presents the evaluation of alpha- and beta-amylases in the starch granule surface during fruit development and ripening. Extractable proteins were assayed for amylase activity and detected by immunofluorescence microscopy and correlated to gene expression. The results suggest that both amylases are involved in starch degradation during mango ripening, probably under the dependence of another signal triggered by the detachment from the mother-plant.
Resumo:
Sugar is a determinant for the quality of mangoes, but information about its accumulation is scarce. Although starch can contribute to sugar production during ripening, not much is known about the enzymes involved. This work presents the changes in carbohydrate and enzymes during the development and ripening of Keitt mangoes. Starch disappearance was concomitant to a fivefold increase of sucrose, the most abundant sugar of the ripe fruits. The activities of alpha-amylase, beta-amylase, phosphorylase and isoamylase were detected in the pulp, and while alpha-amylase increased parallel to the starch content, beta-amylase presented a 20-fold increase during ripening. On the other hand, high phosphorylase activity was observed when fruits were still accumulating starch, and lowered during ripening. Isoamylase was detected during development and increased slightly during ripening, which would be in agreement to the expected role for isoamylases as acting on both subproduct of starch synthesis and degradation.
Resumo:
Banana has been currently indicated as a good source of fructooligosaccharides (FOS), which are considered to be functional components of foods. However, significant differences in their amounts in bananas have been observed in the literature. This work aims to identify and quantify FOS during ripening in different banana cultivars belonging to the most common genomic groups cultivated in Brazil. Considering that these differences can be due to cultivar, stage of ripening, and the methodologies used for FOS analyses, sugar contents were analyzed by high performance anion exchange chromatography-pulsed amperometric detection (HPAEC-PAD) and gas chromatography-mass spectrometry (GC-MS). An initial screening of eight cultivars (Ouro, Nanicao, Prata, Maca, Mysore, Pacovan, Terra, and Figo) in a full-ripe stage showed that 1-kestose, the first member of the FOS series (amounts between 297 and 1600 mu g/g of DM), was accumulated in all of them. Nystose, the second member, was detected only in Prata cultivar. Five of the cultivars were analyzed during ripening, and a strong correlation could be established with a specific sucrose level (similar to 200 mg/g of DM), which seems to trigger the synthesis of 1-kestose (the low amounts of FOS, below the functional recommended dose, indicates that banana cannot be considered a good source of FOS).
Resumo:
Experimental models of infection are good tools for establishing immunological parameters that have an effect on the host-pathogen relationship and also for designing new vaccines and immune therapies. In this work, we evaluated the evolution of experimental tuberculosis in mice infected with increasing bacterial doses or via distinct routes. We showed that mice infected with low bacterial doses by the intratracheal route were able to develop a progressive infection that was proportional to the inoculum size. In the initial phase of disease, mice developed a specific Th1-driven immune response independent of inoculum concentration. However, in the late phase, mice infected with higher concentrations exhibited a mixed Th1/Th2 response, while mice infected with lower concentrations sustained the Th1 pattern. Significant IL-10 concentrations and a more preeminent T regulatory cell recruitment were also detected at 70 days post-infection with high bacterial doses. These results suggest that mice infected with higher concentrations of bacilli developed an immune response similar to the pattern described for human tuberculosis wherein patients with progressive tuberculosis exhibit a down modulation of IFN-gamma production accompanied by increased levels of IL-4. Thus, these data indicate that the experimental model is important in evaluating the protective efficacy of new vaccines and therapies against tuberculosis. (C) 2010 Elsevier Ltd. All rights reserved.