173 resultados para poly(5-amino-1-naphthol)
Resumo:
Objectives. The aim of this study was to evaluate the influence of monomer content on fracture toughness (K(Ic)) before and after ethanol solution storage, flexural properties and degree of conversion (DC) of bisphenol A glycidyl methacrylate (Bis-GMA) co-polymers. Methods. Five formulations were tested, containing Bis-GMA (B) combined with TEGDMA (T), UDMA (U) or Bis-EMA (E), as follows (in mol%): 30B:70T; 30B:35T:35U; 30B:70U; 30B:35T:35E; 30B:70E. Bimodal filler was introduced at 80 wt%. Single-edge notched beams for fracture toughness (FT, 25 mm x 5 mm x 2.5 mm, a/w = 0.5, n = 20) and 10 mm x 2 mm x 1 mm beams for flexural strength (FS) and modulus (FM) determination (10 mm x 2 mm x 1 mm, n = 10) were built and then stored in distilled water for 24 h at 37 degrees C. All FS/FM beams and half of the FT specimens were immediately submitted to three-point bending test. The remaining FT specimens were stored in a 75%ethanol/25%water (v/v) solution for 3 months prior to testing. DC was determined with FT-Raman spectroscopy in fragments of both FT and FS/FM specimens at 24 h. Data were submitted to one-way ANOVA/Tukey test (alpha = 5%). Results. The 30B:70T composite presented the highest K(Ic) value (in MPa m(1/2)) at 24 h (1.3 +/- 0.4), statistically similar to 30B:35T:35U and 30B:70U, while 30B:70E presented the lowest value (0.5 +/- 0.1). After ethanol storage, reductions in K(Ic) ranged from 33 to 72%. The 30B:70E material presented the lowest reduction in FT and 30B:70U, the highest. DC was similar among groups (69-73%), except for 30B:70U (52 +/- 4%, p < 0.001). 30B:70U and 30B:35T:35U presented the highest FS (125 +/- 21 and 122 +/- 14 MPa, respectively), statistically different from 30B:70T or 30B:70E (92 +/- 20 and 94 +/- 16 MPa, respectively). Composites containing UDMA or Bis-EMA associated with Bis-GMA presented similar FM, statistically lower than 30B:35T:35U. Significance. Composites formulated with Bis-GMA:TEGDMA:UDMA presented the best compromise between conversion and mechanical properties. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: This study aimed to compare the effects 0.5% and 1% sodium, amine and stannous fluoride at different pH on enamel erosion in vitro. Methods: Bovine enamel samples were submitted to a cyclic de- and remineralisation for 3 days. Each day, the samples were exposed for 120 min to pooled human saliva and subsequently treated with one of the fluoride solutions for 3 min: amine fluoride (AmF, 0.5% and 1% F(-)), sodium fluoride (NaF, 0.5% and 1% F(-)), each at pH 3.9 and 7.0, and stannous fluoride (SnF(2), 0.5% and 1% F-), at pH: 3.9. Additionally, two groups were treated with fluoride-free placebo solutions (pH: 3.9 and 7.0) and one group served as control (no fluoridation). Ten specimens each group were inserted in a so-called artificial mouth and eroded six times daily with hydrochloric acid (pH 2.6) for 90 s each intermitted by exposure to artificial saliva (1 h). After 3 days, enamel loss was analyzed profilometrically and evaluated statistically by ANOVA. Results: Only the acidic 0.5% and 1% SnF(2) and 1% AmF solutions were able to reduce erosive enamel loss significantly, while all other solutions and placebos did not differ significantly from the control. Between the acidic SnF(2) and the 1% AmF solutions no significant differences could be detected. Conclusion: At the same concentrations, acidic SnF(2) and AmF may be more effective than NaF to protect enamel against erosion. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This in vitro study evaluated the effect of a prolonged erosive pH cycling on the superficial microhardness change (SMHC) and the erosive wear of different restorative materials. Eighty enamel specimens with prepared cavities of 1.5 x 1.5 mm were randomly divided into eight groups according to the restorative materials used for the fillings (RMGI - resin-modified glass-ionomer, CGI - conventional glass-ionomer, CR- composite resin, A - amalgam) and immersion media used (ERO - erosive medium or SAL - artificial saliva). During 35 days, half of the specimens were immersed in a cola drink (ERO), for 5 min, three times a day, and they remained in SAL between the erosive cycles. The other half of the specimens was immersed in SAL only, for the entire experimental period (control). Data were tested for significant differences by anova and Tukey`s tests (P < 0.05). Scanning electron microscopy images were made to illustrate the enamel erosive wear and restorative materials alterations. The mean SMHC (%) and mean erosive wear (mu m) of the materials were: RMGI-ERO (30/0.5); CGI-ERO (37/0.5); CR-ERO (-0.3/0.3); A-ERO (-4/0.3); RMGI-SAL (4/0.4); CGI-SAL (-6/0.4); CR-SAL (-3/0.2) and A-SAL (2/0.4). Scanning electron microscopy images showed pronounced enamel erosive wear on groups submitted to erosive pH cycling when compared with groups maintained in saliva. In conclusion, the prolonged pH cycling promoted significantly higher alterations (SMHC and erosive wear) on the glass-ionomer cements than the CR and amalgam.
Resumo:
Objectives. To better comprehend the role of CHX in the preservation of resin-dentin bonds, this study investigated the substantivity of CHX to human dentin. Material and methods. Dentin disks (n = 45) were obtained from the mid-coronal portion of human third molars. One-third of dentin disks were kept mineralized (MD), while the other two-thirds had one of the surfaces partially demineralized with 37% phosphoric acid for 15 s (PDD) or they were totally demineralized with 10% phosphoric acid (TDD). Disks of hydroxyapatite (HA) were also prepared. Specimens were treated with: (1) 10 mu L of distilled water (controls), (2) 10 mu L of 0.2% chlorhexidine diacetate (0.2% CHX) or (3) 10 mu L of 2% chlorhexidine diacetate (2% CHX). Then, they were incubated in 1 mL of PBS (pH 7.4, 37 degrees C). Substantivity was evaluated as a function of the CHX-applied dose after: 0.5 h, 1 h, 3 h, 6 h, 24 h, 168 h (1 week), 672 h (4 weeks) and 1344 h (8 weeks) of incubation. CHX concentration in eluates was spectrophotometrically analyzed at 260 nm. Results. Significant amounts of CHX remained retained in dentin substrates (MD, PPD or TDD), independent on the CHX-applied dose or time of incubation (p < 0.05). High amounts of retained CHX onto HA were observed only for specimens treated with the highest concentration of CHX (2%) (p < 0.05). Conclusion. The outstanding substantivity of CHX to dentin and its reported effect on the inhibition of dentinal proteases may explain why CHX can prolong the durability of resin-dentin bonds. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Rafacho A, Cestari TM, Taboga SR, Boschero AC, Bosqueiro JR. High doses of dexamethasone induce increased beta-cell proliferation in pancreatic rat islets. Am J Physiol Endocrinol Metab 296: E681-E689, 2009. First published January 21, 2009; doi:10.1152/ajpendo.90931.2008.-Activation of insulin signaling and cell cycle intermediates is required for adult beta-cell proliferation. Here, we report a model to study beta-cell proliferation in living rats by administering three different doses of dexamethasone (0.1, 0.5, and 1.0 mg/kg ip, DEX 0.1, DEX 0.5, and DEX 1.0, respectively) for 5 days. Insulin sensitivity, insulin secretion, and histomorphometric data were investigated. Western blotting was used to analyze the levels of proteins related to the control of beta-cell growth. DEX 1.0 rats, which present moderate hyperglycemia and marked hyperinsulinemia, exhibited a 5.1-fold increase in beta-cell proliferation and an increase (17%) in beta-cell size, with significant increase in beta-cell mass, compared with control rats. The hyperinsulinemic but euglycemic DEX 0.5 rats also showed a significant 3.6-fold increase in beta-cell proliferation. However, DEX 0.1 rats, which exhibited the lowest degree of insulin resistance, compensate for insulin demand by improving only islet function. Activation of the insulin receptor substrate 2/phosphatidylinositol 3-kinase/serine-threoninekinase/ribosomalprotein S6 kinase pathway, as well as protein retinoblastoma in islets from DEX 1.0 and DEX 0.5, but not in DEX 0.1, rats was also observed. Therefore, increasing doses of dexamethasone induce three different degrees of insulin requirement in living rats, serving as a model to investigate compensatory beta-cell alterations. Augmented beta-cell mass involves beta-cell hyperplasia and, to a lower extent, beta-cell hypertrophy. We suggest that alterations in circulating insulin and, to a lesser extent, glucose levels could be the major stimuli for beta-cell proliferation in the dexamethasone-induced insulin resistance.
Resumo:
P>Aim To assess the physicochemical properties and the surface morphology of AH Plus, GuttaFlow, RoekoSeal and Activ GP root canal sealers. Methodology Five samples of each material were evaluated for setting time, dimensional alteration, solubility and radiopacity tests, according to ANSI/ADA Specification 57. A total of 50 mL of deionized distilled water from the solubility tests were used to measure the metal solubility by atomic absorption spectrometry. The morphologies of the external surface and the cross-section of the samples were analysed by means of a scanning electron microscope (SEM). Statistical analysis was performed by using one-way anova and post hoc Tukey-Kramer tests with the null hypothesis set as 5%. Results AH Plus had the longest setting time (580.6 +/- 3.05 min) (P < 0.05). Activ GP did not have a mean value on the radiopacity and solubility tests (1.31 +/- 0.35 mm and 11.8 +/- 0.43%, respectively) in accordance with ANSI/ADA, being significantly different from the other materials (P < 0.05), which had mean values for these tests in accordance with the ADA`s requirements. GuttaFlow was the only sealer that conformed to the Specification 57 concerning the dimensional alteration test (0.44 +/- 0.16%) (P < 0.05). The spectrometry test revealed significant Ca2+, K+, Zn2+ ion release from Activ GP sealer (32.57 +/- 5.0, 1.57 +/- 0.22 and 8.20 +/- 1.74 mu g mL-1, respectively). In SEM analysis, the loss of matrix was evident and the filler particles were more distinguishable in all groups. Conclusions The setting time of all sealers was in accordance with ANSI/ADA`s requirements. Activ GP did not fulfill ANSI/ADA`s protocols regarding radiopacity, dimensional alteration and solubility. GuttaFlow was the only sealer that conformed to the Specification 57 in all tests. SEM analysis revealed that the surfaces of all sealers had micromorphological changes after the solubility test.
Resumo:
Objectives: The purpose of this study was to investigate the effect of the domestic use of a disclosing agent for denture hygiene. Materials and methods: Completely edentulous participants wearing maxillary dentures were randomly assigned to one of the three intervention groups: (1) Follow-up only (control; n = 12); (2) Oral and denture hygiene instructions (n = 10); (3) Instructions associated with the home use of a disclosing agent (1% neutral red; n = 10). Biofilm coverage area (%) over internal and external surfaces of the maxillary denture was assessed at baseline and after 14 and 90 days. Data were evaluated by generalised estimating equations based on score tests (alpha = 0.05). Results: The participants presented low changes for areas of biofilm coverage (14 days (%): internal: GI = 1.4 +/- 0.9; GII = 1.5 +/- 1.3; GIII = -0.4 +/- 0.9; external: GI = 1.4 +/- 1.5; GII = 1.5 +/- 1.4; GIII = -0.4 +/- 0.9; 90 days (%): internal: GI = 2.0 +/- 0.9; GII = 2.2 +/- 1.4; GIII = 0.3 +/- 1.0; external: GI = 2.1 +/- 1.4; GII = 2.2 +/- 1.5; GIII = 0.3 +/- 0.9). Changes were similar for the three groups (p = 0.293) and were not influenced by the test time (p = 0.218). Conclusion: It can be concluded that the home use of a disclosing agent for denture hygiene does not improve the removal of the biofilm, particularly for patients with adequate oral hygiene habits.
Resumo:
Purpose: This study evaluated the effect of different microwave polymerization cycles on the color changes of a microwave-processed denture base resin after accelerated aging and immersion in beverages. Materials and Methods: Specimens of light pink acrylic resin were divided into three groups according to polymerization cycle: (A) 500 W for 3 minutes, (B) 90 W for 13 minutes + 500 W for 90 seconds, and (C) 320 W for 3 minutes + 0 W for 4 minutes + 720 W for 3 minutes. Control groups were a heat-processed acrylic resin (T) and a chemically activated denture repair resin (Q). Eight specimens per group were aged in an artificial aging chamber and evaluated at 20, 192, and 384 hours. Another series of 40 specimens per group were immersed in water, coffee, tea, cola, or red wine and evaluated at 1, 12, and 36 days. Color was measured by a spectrophotometer before and after aging or immersion. Color changes (Delta E) were analyzed by ANOVA/Bonferroni t-test (alpha = 0.05). Results: Mean Delta E (+/- SD) after 384 hours of accelerated aging were (A) 2.51 +/- 0.50; (B) 3.16 +/- 1.09; (C) 2.89 +/- 1.06; (T) 2.64 +/- 0.34; and (Q) 9.03 +/- 0.40. Group Q had a significantly higher Delta E than the other groups. Color changes of immersed specimens were significantly influenced by solutions and time, but the five groups showed similar values. Mean Delta E at 36 days were (water) 1.4 +/- 0.8; (coffee) 1.3 +/- 0.6; (tea) 1.7 +/- 0.5; (cola) 1.4 +/- 0.7; and (red wine) 10.2 +/- 2.7. Results were similar among the five test groups. Conclusions: Color changes of the microwave-polymerized denture base resin tested were not affected by different polymerization cycles after accelerated aging or immersion in beverages. These changes were similar to the conventional heat-polymerized acrylic resin test, but lower than the repair resin after accelerated aging.